Mathematics
มัธยมปลาย

至急です。明日の朝までにお願いしたいです
四角4.5の解説をして欲しいです
数学Bの確率です。

めなさい。 & P₂0x²+1 +²²6-63 5:4 めなさい。 √(x) = 2/(x₂-m) ² Pl 0-3)*x ² + (1-3) × 1 + (²-3) * 一般計+5x+2x1/ 動く点Pを考える。 始め, 点Pの座標は2である。 1個のさいころを 唇だけ正の方向に進むとする。 さいころの出る目を X, 移動後の点Pの 次の問に答えなさい。 計3+4+5+=計計 (2) 確率変数 Y の平均 EY) を求めなさい。 い。 + ① 17 E(Y) = oF(X)+b VY) を求めなさい。 v(Y) = d'v(x) =3.72 1=₁ (4) Xの標準偏差 (X) を求めなさい。 ①3 == ②5 15 v σ(X)= EY) = = 3.2-2 =-2=1 (4) 確率変数 Y の標準偏差 α (Y) を求めなさい。 N o (Y) = - ① 126 6(Y) = N(Y) のカードが4枚ずつあり、各色のカードには1~4までの数が1つずつ 黄のカードからそれぞれ1枚ずつ引き, 赤のカードの数をX, 青と黄 絶対値をYとするとき, 次の問に答えなさい。 EY) と分散 VY) を求めなさい 。 (3 2 I 4 [b] 15 2 4 2 T6 TV X|(4) 42 12 (2) ある製品を製造する過程で、 不良品が出る確率は 0.05 であることが分かっている。この製品を 406 15 1000 個製造するとき, その中に不良品が含まれる個数 X の平均 EX) と標準偏差 (X) を求めな さい。 21 363 <知・技≫ 次の問に答えなさい。 TL- 1個のさいころを90回投げて2以下の目が出る回数をXとする。 このとき, 確率変数Xの平 均 EX) と標準偏差 (X) を求めなさい。 EX) = ①,0(X)= ② ③ 3√√14 EX) = ①,0(X)= 5 <思・判・表原点 0 から出発して数直線上を移動する点Pを考える。 1個のさいころを投げ て5以上の目が出たら正の向きにだけ移動し, それ以外の目が出たら負の向きに2だけ移動 する。 さいころを12回投げた後の点Pの座標をXとし, 5 以上の目が出た回数をY とする とき、次の問に答えなさい。 (1) 確率変数Y の平均 EY) と分散 V(Y) を求めなさい。 2 EY) = ①, V(Y) = (2) XをYで表しなさい。 y-② ② (3) 確率変数 X の平均 EX) と分散 V(X) を求めなさい。 (2 EX= ①,VX)= ③ 2
数学b 確率 確率変数 分散

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉