Mathematics
มัธยมปลาย

赤丸の部分の長さ(座標)はどうやって出すんですか?

00000 重要 例題284 座標空間における回転体の体積 (2) 空間内の3点O(0, 0, 0),A(1, 0, 0),B(1,1,0)を頂点とする三角形 OAB をx軸の周りに1回転させてできる円錐をVとする。円錐Vをy軸の周 りに回転させてできる立体の体積を求めよ。 〔大阪大〕 重要 283 指針 立体のようすがイメージしにくいので、断面積を考える。 Vの側面上の点を P(x,y,z),Q(x, 0, 0) とすると, △OPQはOQ=PQの直角二等辺三角形であるから 関係 式をx,y,zで表してVの側面の方程式を求める。 ②Vの平面y=tによる切り口は,右図のような曲線の一部 と直線x=1で囲まれた図形で, これをy軸の周りに1回転 させるから、題意の立体の平面y=tによる切断面はドーナ ツ状の図形になる (解答の図参照)。この図形の面積は (外側の円の面積) (内側の円の面積)・・・・・・・・ 解答 円錐Vの側面上の点をP(x, y, z) (0≦x≦1, y|≦1) とする。 A 0 円 V上の点Pと点Q(x, 0, 0)の距離はxであるから③ (x-x)2+y2+z^=x2 よって x2-2²=y2(0≦x≦1) ZA 円錐Vの平面y=t(-1≦t≦1) によ る切り口は, 曲線 C: x²-22=12 (0≦x≦1) と直線x=1で囲まれた図 形となる。 点(0, 0) , この図形内の点との 距離の最大値は √1²+(√1-t²)² = √2-1² |t| √1-12 (0, t,0) 最大 \/c It 1 x 小 最小値は したがって, 円錐Vをy軸の周りに1回転させてできた立体の、 平面y=tによる切断面は右の図のようになる。 この図形の面積は π(√2-1²) ²-n|t|²=2(1-t²)π よって 求める立体の体積は S_,2(1-12)zdt=-2x$_,(t+1)(t-1)dt 8 = -2x - (-). (1-(-1))³= - - 7 =-2π・ 3 [参考] 対称性を利用して, 21 2 (1-t)rdt を計算してもよい。 p"+e=" 1 B AZ -X- Q(x,00 √2-12 -||- (0, t,0) P(x,y,z) A 一母線 √2-1² -√2-t²-t X 'B √√2-12 sysloga 75 76th 461 8章 40 体 積

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?