学年

質問の種類

数学 高校生

この問題の(ⅰ)はa=0の時をなぜ確かめているんですか?

368 第6章 微 Think 例題 198 実数解の個数(2) **** 3次方程式-3a'x +40=0が異なる3つの実数解をもつとする。栄 数αの値の範囲を求めよ. 114 考え方 例題 197 (p.367) のように定数を分離しにくい。 このような場合は,次のように3次 数のグラフとx軸の位置関係を考える。 3次方程式 f(x)=0が異なる3つの実数解をもつ 3次関数においては、 y=f(x) のグラフがx軸と3点で交わる (極大値)>0 かつ (極小値)<0 (極大値)×(極小値) < 0 (極大値)> (極小値 ) 解答) f(x)=x-3ax+4a とおくと f'(x)=3x²-3a²=3(x+a)(x-a)...... ① 方程式 f(x) =0 が異なる3つの実数解をもつ条件は、 y=f(x) のグラフがx軸と3点で交わること つまり、(極大値)×(極小値) <0 となることである. (i) ①より、f'(x)=0 のとき, a>0のとき、 y=f(x) A f(a)f(B) f(x)が極値をもっ f(x)=0が異なる? つの実数解をもっ f'(x)=0の 判別式) > 0 x=-a,a x -a 増減表は右のよう f'(x) + 0- 20 a (p.353 参照) + 直接, 増減表を書いて になる. f(x) 極大 極小 極値を調べたが、 a0 のとき, X a -a 増減表は右のよう になる。 f'(x) + f(x) 0 20 (+) 極大 極小 a=0 のとき,f(x)=xより,f(x)=0 の解は x=0 (3重解)となり不適 (ii) f(-a)xf(a)=(2a3+4a)(-2a3+4a) =-4a² (a²+2)(a2-2)<0 (i)より, a=0 であるから,a>0,d²+2>0より, a²-2>0 これより、 (a+√2) (a_√2)>0 a<-√2√2<a よって、求める αの値の範囲は, a<-√2√2<a 3次方程式(x)=0が異なる3つの実数解をもつ y=f(x)のグラフがx軸と3点で交わる (極大値)>0かつ (極小値) <0 (極大値) X (極小値) < 0 f'(x) =0 の判別式を 使ってもよい。 判別式をDとすると D=-4-3(-3a²) =36a2>0 より a<0, 0<a (a=0) となる. Focus 注> 例題198 で (1) f(x) が極値をもつ (Ⅱ) (極大値)×(極小値) <0 満たさないと (極値

未解決 回答数: 1
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

この問題なのですが、判別式を使って解けないでしょうか??0より大きいということはグラフが解をもたないか重解をもつときだからd=<でいいのかなって思ったんですけど.....この問題は必ず場合分けをしないと解けないのでしょうか.判別式は使えないんでしょうか.....

例題 97 文字係数の2次不等式 志の不立 ★★★ 次のxについての2次不等式を解け。 (1) x2-3ax +2a²+ α-1>0 (2) ax²-5ax+6a < 0 思考プロセス 《RAction 不等式は, グラフとx軸の位置関係を考えよ 係数に文字を含んでいても, まず左辺の因数分解を考える。 場合に分ける どちらが大きい? 例題 93 + B X 連立不等 例題 98 2つの2次不等式 x 整数がただ1つとな <ReAction 連立不 (1) 因数分解すると {x-(αの式)}{x- (αの式)}> 0 (2)問題文で「2次不等式」とあるのでα 0 である。 因数分解すると a(x-2)(x-3) < 0 ↑グラフは単純に右の図でよいか? 3 x Action》 文字係数の2次不等式は, 方程式の解の大小・グラフの向きで場合分けせよ 解 (1) x3ax +2a + α-1>0より x-3ax+(2a-1)(a+1)>0 (x-3)(x-3) {x-(2a-1)}{x-(a+1)}>0 .... DDR (x- (ア) α+1 < 2a-1 すなわち α > 2 のとき 不等式① の解は x < a +1,2a-1 <x (イ) α+1=2a-1 すなわち a=2のとき 不等式① は (x-3)20 2a+a-1-(2a-1)(a+1) 仕入 2つの解の大小関係で場 合分けする。 (ア) して + a+1 /2a-1x よって, 解は3以外のすべての実数 (ウ) 2a-1 <a +1 すなわち a < 2 のとき 不等式①の解は x<2a-1, a +1 <x (ア)~(ウ)より, 求める不等式の解は (イ) + + 3 x (ウ) + 2a-1 + la+1x α > 2 のとき x <α+1, 2a-1 <x a=2のとき 3 以外のすべての実数 la < 2 のとき x <2a-1, a +1 <x (2) ax²-5ax+6a < 0 より a(x-2)(x-3) < 0 与えられた不等式は2次不等式であるから a≠0 (ア) α > 0 のとき (ア) 2<x<3 (イ) α < 0 のとき x<2,3<x (ア)(イ)より, 求める不等式の解は [a > 0 のとき 2 <x<3 la < 0 のとき x < 2, 3 <x ato 練習 97 次のxについての2次不等式を解け。 (1)x2-x+α(1-4) <0 (イ) A 3 x a0 のとき 下に凸 4 < 0 のとき 上に凸 となるから場合分けする。 (別解) 両辺をαで割っ て求めることもできる。 (ア) α > 0 のとき (x-2)(x-3) < 0 よって 2<x<3 (イ) α <0 のとき (2) v2 -ax-2a < 0 (x-2)(x-3)>0 よってx<2,3<x 172 題 97 東京書籍

未解決 回答数: 1
1/6