学年

質問の種類

数学 高校生

(2)で私はx=nから始めたのですが答えがどうしても合いません。nではダメなのでしょうか。教えて頂きたいです🙇

254 重要 例題 161 面積と数列の和の極限①①①①① 曲線 y=ex をCとする。 ・cos21. (1) C上の点P(0, 1) における接線とx軸との交点を Q とし,Qを通りx 軸に垂直な直線とCとの交点をP2とする。Cおよび2つの線分 PiQ1, QP2 で囲まれる部分の面積Sを求めよ。 (2)自然数nに対して, PrからQn, Pn+1 を次のように定める。C上の点P における接線とx軸との交点をQn とし, Qn を通りx軸に垂直な直線と C との交点をP1 とする。 Cおよび2つの線分 PQ QnPn+1 で囲まれる部 分の面積Sを求めよ。 00 n, たが、 (3) 無限級数ΣSnの和を求めよ。 [類 長岡技科大 ] n=1 基本153 CHART & SOLUTION (1) 曲線 y=f(x) 上のx=αの点における接線の方程式は y-f(a)=f'(a)(x-a) 面積S1 は, 0 を原点として 曲が をしている区間 =2 (Cおよび3つの線分P10, OQ1, QiP2 で囲まれる部分) (OPQ) と考えると求めやすい。 (2) Pr(an,e-an) とすると, 点P" における接線とx軸との交点のx座標, すなわち, 点 Q のx座標が、点P+1 の x 座標 α+1 と等しいことから, 数列{a} の2項間漸化式を作る ことができる。 これから一般項 αn が求まり, (1) と同様に定積分を計算することで、面積Sを求めるこ とができる。 (3) 数列 {Sn} は等比数列となるから、無限等比級数の和を考えることになる。 常に y20 解答 A-CO -sin2=ipint-asin (1) -x y = e¯x 5 v' ==-x ib VA 20, cos から

解決済み 回答数: 1
数学 高校生

解答とは違う解き方で解きましたが、(2)の答えが合いません。×2が足りないそうですが、どこで間違えたのでしょうか。

92項間漸化式/an+1=pan+f(n) - 次の式で定められる数列の一般項 4 を求めよ. (1) a=1, n+1=20n+n (n=1,2,3, ...) (2) a1=4,n+1=40-2"+1 (n=1, 2, 3, ...) (弘前大・理工-後) (信州大工) 型の漸化式を解く 2項間漸化式の解き方 an+1=pan+f(n) (p=0.1:f(n)はnの式) には、変形して+1+g(n+1)=plan+g(n)}となるようなg(n) を見つけて, {an+g(n)}が等比 数列になることを用いればよい (i) f(n)がnの多項式の場合,g(n)もf(n)と次数が等しいnの多項式である。g(n)の係数を 未知数とおいて,☆より係数を求めればよい。 特にf (n) が定数の場合は前頁で扱った. (ii) f(n)=Aq" (g≠p, A は定数) の場合,g(n)=Bg”として, が成り立つように定数Bを定め an+1 an ればよい.また,an+1= pan+Ag" の両辺を"+1で割って, +A p" +1 (2)². ここで, an A bn とおいて, bm+1=bn+ として階差型の解き方 (前頁)に持ち込む手でもよい。 P 解答 (1) an+1+A(n+1)+B=2(an+An+B) を満たす A, B を求める. an+1=2an+An+B-A と条件式を比べて, A = 1, B-A=0 :.B=1 an+1+(n+1)+1=2(a+n+1)より,{an+n+1}は公比2の等比数列. よって, an+n+1=2"-1 (Q1+1+1)=3·2"-1 .. an=3.2"-1-n-1 左辺はA(n+1) になることに注 意. (2) +1=44-2n+1 を 4n+1で割って an+1 an 1+1 4n+1 an 4" 2 \+1 == 4" bm=211 とおくと, b1=41=1,n+1=bn-(12)となるので2のとき 【 (2) の別アプローチ】 f(n) が Ag” の形の場合は、両辺 を Q"+1 で割ると, 典型的な2項 間漸化式に帰着されることに着 目. 漸化式を 2 +1 で割って, 1 \n-1 -1 bm=b1+2(bk+1-bh)=1- k=1 -1- 12/12(1/2)-1/12+(1/1) n-3 1+1 2 an+1 an ・=2. =1- -1 2"+1 2" 11-113 an 2" Cn= とおくと, C+1=2cm-1. (n=1のときもこれでよい) これから解く. よって,=40=4 =4*{/12+(1/2)"} =2.4"-1+2" 【別解】 (2) an+1+A.2"+1=4(an+A2") を満たす A を求める. an+1=40+4A2"-A2n+1=40+A2"+1 と条件式を比べて, A=1. an+1-2n+1=4(an-2")より, {4-2"}は公比4の等比数列. よって, an-2"=4"-1(α1-21)=2.4-1 . 9 演習題(解答は p.75) 次の式で定められる数列の一般項4 を求めよ. an=2.4"-1+2" (1) 41=2,4+1=3an+2n2-2n-1 (n≧1) (2) α=1,n+1-20万=n.2n+1 (n≧1) (岐阜大) (日本獣医畜産大) (1), (3) an+1+f(n+1) =k(a+f(n)) となる (日)を探す

解決済み 回答数: 1
数学 高校生

2項間漸化式を目指して2枚目のように解きましたが、答えが違いました。なぜでしょうか。

92項間漸化式/an+1=pan+f(n)- 次の式で定められる数列の一般項 αを求めよ. (1) 1=1, m+1=20n+n (n=1, 2, 3, ...) (2) a1=4, n+1=40-2n+1 (n=1, 2, 3, ...) (弘前大・理工-後) (信州大工) 2項間漸化式の解き方 an+1=pan+f(n) (p=0.1f(n)はnの式)……型の漸化式を解く には,変形してan+1+g(n+1)=p{an+g(n)}となるようなg(n)を見つけて,{an+g(n)}が等比 数列になることを用いればよい. (i) f(n)がnの多項式の場合,g(n)もf(n) と次数が等しいnの多項式である。g(n)の係数を 未知数とおいて, ☆より係数を求めればよい。 特にf (n) が定数の場合は前頁で扱った。 (i) f(n)=Aq"(g=p, A は定数) の場合, g(n)=Bq"として,☆が成り立つように定数Bを定め an+1 an A ればよい.また, an+1= pan+Ag" の両辺を "+1で割って + pn+1 pn p 4(1). ここで. an ,= bn とおいて, bm+1=bn+ A n 9 として階差型の解き方 (前頁) に持ち込む手でもよい。 解答圜 p" (1) an+1+A(n+1)+B=2(an+An+B) を満たす A, B を求める. an+1=2an+An+B-A と条件式を比べて, A=1,BA=0 ... B=1 an+1+(n+1)+1=2(a+n+1) より, {an+n+1}は公比2の等比数列 . .. an=3.2"-1-n-1 よって, an+n+1=2"-1 ( 41+1+1)=3・2n-1 (2) +1=4a-2n+1 を 4n+1で割って, An+1 an 1\n+1 4n+1 4m 2 an a1 1\n+1 bm- == 4" とおくと, b1=2=1, bn+1=bn- 2 となるので,n≧ 2 のとき, 1\n-1 1- 1k+1 =1- k=1 k=1 左辺は A (n+1) になることに注 意. 【 (2) の別アプローチ】 f (n) が Aq” の形の場合は、 を qn+1で割ると,典型的な2項 間漸化式に帰着されることに着 目. 漸化式を2+1で割って n-1 bn=b₁+ (b+1-br)=1—', =1/1/11(1/1)-1/2+(1/2)(n=1のときもこれでよい) よって、 2=4m {/12+(1/2)"}-2-4-1+2" 【別解】 (2) 4n+1+A.2n+1=4(an+A2") を満たす A を求める. an+1=4a+4A2"-A2"+1=4an+A2"+1 と条件式を比べて, A=-1. an+1-2n+1=4(an-2")より, {an-2"}は公比4の等比数列. よって, an-2"=4"-1(α1-21)=2.4-1 ..an=2.4"-1+2" 9 演習題(解答は p.75) 次の式で定められる数列の一般項 n を求めよ. (1) 41=2,n+1=3an+2n2-2n-1 (n≧1) (2) a1=1,4n+1-2an=n.2n+1 (n≧1) (3) α1=1,n+1=2 1 ant an+1 an =2- 1 2"+1 2" an Cn= とおくと, C+1=2c-L 2" これから解く. (岐阜大) (日本獣医畜産大) (1), (3) an+1+f(n+1) =k(antf(")) となる f(n) を探す (2)階差に持ち込む n-1 (n≧1) n(n+1) (岐阜大 教後)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(3)について (1)より、のあとどっから出てきた値ですか? どう出てきたか分からないので教えて欲しいです。 また、どうやって赤色の式を立式したのか。 立式後の計算過程はわかるのですが、 最後の1文の式も理解出来ません。 多いですが全て教えて欲しいです。

政宗 3 単調 基本 例題 019 有界で単調減少する数列の極限 次の条件で定められる数列{an} について,以下のことを示せ。 ★★ [基本 a>2 この 1 a=2, an+1= an an 2) =(a+) (n=1, 2, 3, ....) (1) すべてのnについて an≧2 (2)数列{az} は単調に減少する。 指針 (3) 数列{a} は √2 に収束する。 指針 この漸化式はニュートン法(p.96 参照) によって構成され, 近似値 2 を与える計算方法 1つである。 (1)帰納的にa>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim an-√21=0 を示す。 12100 解答 (1) α=2>0 であり,漸化式の形から,すべての自然数nについてan>0である。 よって,相加平均と相乗平均の関係から,任意の自然数nについて 11 = 1/2 (an + 2 ) 2 1 1 · 2 √an · 2 =√2 an+1=- an an =2√2 であるから,すべてのnについて 全体 > 「or an≧√2 ord -ano (2) 任意の自然数nについて anz anti-an= 2 = (a + 2) - 2-an -an= 両認して、 2 2an (1)より, an≧√2 であるから an = 2 2. an²≤0 ゆえに 2-an≤0 anti-an 解答 よって, an+1≦an であるから, 数列{az} は単調に減少する。■ (3) 与えられた漸化式により an-√2 より 2an an+1 1 an2-2√2 an+2(an-√2)2 S an 2an 2-12 であるから 2an √2 = 1½ (an - √2) 0≤an-√2 ≤ (1) (a-√2) よって lim (1) (-√2)=0であるから 1\n-1 2an an-√2 antl 20n -(an-√2) F=/(an-2) a) - 2 ½ £ (an-√=)) ant-2FanF liman=√2 818 an an 089-2 osan- 2 参考 lin n- 0500-12

未解決 回答数: 1
1/3