学年

質問の種類

数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

解決済み 回答数: 1
数学 中学生

√42が無理数であることの証明についてです。 m=√42nなのでmが2よりも大きくなるのはわかるのですが、nがなぜ2よりも大きいといえるのかが分かりません。(青線部)教えてください。お願いします。

答 √42 が有理数であると仮定すると √42mm,nは自然数)と表される。 n =√42nとし、両辺を2乗すると m²=42n2... ① 結論を否定。 無理数でない ⇔有理数である m≧2.n≧2であるから,m, n を素因数分解したものをそ6<42くから。 れぞれ m=pip2.pk (P1, P2,, De は素数) n=gg....... (g1, Q2,, q は素数) とし、①に代入すると 2. 2. Di2DzDk2=2・3・7g2q2qi2 ここで,②の左辺の素因数の個数は 2k個 右辺の素因数の個数は 21+3個 の断り書きを忘れず に。 42=2・3・7 ② 偶数個。 奇数個。 すなわち、 同じ数が2通りに素因数分解されることになり、参考 ②で、2の素因数の 素因数分解の一意性に反する。 よって, 42 は有理数でない, すなわち無理数である。 個数が, 左辺は偶数個, 右辺は奇数個であること から矛盾を導いてもよい。 数学Ⅰの 「命題と証明」の単元においても,上の例題と同じような問題を背理法で証明する ことを学ぶが (p.80), そこでは,pg を 「1以外に正の公約数をもたない (互いに素であ 約数と倍数

解決済み 回答数: 1
数学 高校生

背理法による証明についての問題です 写真に赤くマークしてあるところについて、なぜ‪√‬5=r-7の形にする必要があるのか分からないため、教えてほしいです。 また、‪√‬5+‪√‬7=rの形のまま証明を進めていくのはダメなのかということも教えてほしいです。

106 基本 例題 61 背理法による証明 1000 7 が無理数であることを用いて, 5 + √7 は無理数であることを証明せよ、 指針無理数である (=有理数でない)ことを直接示すのは困難。 そこで,証明しようとする事柄が成り立たないと仮定して、 矛盾を導き, その事柄が成り立つことを証明する方法, すなわち 背理法で証明する。 実数 p.102 基本 無理数 有理数 直接がだめなら間接で 背理法 CHART 背理法 「でない」,「少なくとも1つ」 の証明に有効 +√7は実数であり √5+√7 が無理数でないと仮定する。 このとき√5+√7 は有理数であるから, rを有理数とし て√5+√7=rとおくと 5=-7の倍数でない」 両辺を2乗して ゆえに ¥0であるから 5=x²-2√7r+7 2√7=2+2 √√√7 = r²+2 2r ...... r2+2,2は有理数であるから,①の右辺も有理数であ 無理数でないと仮定し いるから,有理数であ 2乗して,5を消す (*) 有理数の和・差 は有理数である。 38=d +3=p [1] (1+1)(1+8)=do (*) よって①から√7 は有理数となり 7 が無理数である ことに矛盾する。 縁ではない S+++8)=(S+SE)(1+8) したがって, 5+√7 は無理数である。 矛盾が生じたから 1)+1 √5+√7が無理数 ない」が誤りだった 3+4+)は整数である(+)かる。 [1][2]により、対 この仮定,すなわち, したがって、もとの命も真である 背理法による証明と対偶による証明の違い 目 30+=+= [] 命題pg について、 背理法では 「pであって」でない」 (命題が成り立たない)とし 討 盾を導くが,結論の 「g でない」に対する矛盾でも、仮定の 「である」 に対する矛盾 どちらでもよい。 後者の場合,「刀」つまり対偶が真であることを示したことに このように考えると, 背理法による証明と対偶による証明は似ているように感じられ 本質的には異なるものである。 対偶による証明は引 る段階で道

解決済み 回答数: 1
1/96