学年

質問の種類

数学 高校生

数学A 順列 円順列・重複順列 どうやって計算したら赤で線をひいいたところの答えになるかがわかりません。 教えてくださると助かります!

1章 364 基本 21 組分けの問題 6枚のカード1,2 3 4 5 6 がある 慣列 00000 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし、各組に 少なくとも1枚は入るものとする。 (2)6枚のカードを2組に分ける方法は何通りあるか。 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。 ただし、空の箱はないものとする。 指針 (1) 6枚のカードおのおのの分け方は,A,Bの2通り。 2通り 23456 ズーム UP 重複順列,組分けの問題に関する注意点 2321337 365 前ページの例題21 や p.372 例題 25 のように, 組分けの問題には、いろいろなタイプがあ り問題の設定に応じて考えていく必要がある。 例題21では重複順列の考えを利用して いるが,その内容について更に掘り下げて考えてみよう。 ●重複列の考え方 異なるn個のものから個取る重複順列の総数は n (*) 2222 123456 ↑ 1 2 重複順列で ↑ ↑ ただし,どちらの組にも1枚は入れるから, 全部を -2 AまたはBに入れる場合を除くために A A A B B or or or or or or B B B B 単に公式として覚えているだけでは,nとrを 取り違えて,例えば (1) は, 26でなく62としてしまうミス 通通通通通通 りりりりりり (2) (1) で, A, B の区別をなくすために ÷2 (3)3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 箱 ABC カード 12 (3456 を A, B, C に分ける) -(Cが空箱になる = 3, 4, 5, 6をAとBのみに入れる) 3,4,5,6から少なくとも1枚 CHART 組分けの問題 0個の組と組の区別の有無に注意 (1) 6枚のカードを, A, B2つの組のどちらかに入れる方 | A,Bの2個から6個取 る重複順列の総数。 法は 2°=64(通り) 64-262 (通り) をしやすい。 よって、慣れないうちは指針の (1) にあるような図, または上の図の ように、各位置に何通りの方法があるかがわかるような図をかくとよい。 また、図をかくことで, 重複順列は,積の法則を繰り返し利用したものになって いることがわかり, (*) の式の原理をしっかり理解するのにも役立つ。 組分けの問題での注意点 1 組分けの問題では, 0個となる組が許されるかどうかにまず注目しよう。 (1)では, 「各組に少なくとも1枚は入る」 0枚の組はダメ) という設定であるか ら, A0枚, 組B:1~6の6枚) の分け方と (A1~6の6枚組B: 0枚) の分け方を除く必要がある。 ここで, 仮に 「1枚も入らない組があってもよ 「い」 (0 枚の組もOK) という設定ならば, 答えは2°=64 (通り) となる。 なお,(2)では,一方の組に6枚のカードすべてを入れると組の数は1となり, 2組という条件を満たさない。 すなわち, 問題文に断り書きはないが,「0枚の組 は許されない」という前提条件のもとで考えていくことになる。 (2) において ÷2 する理由 解答 このうち, A,Bの一方だけに入れる方法は よって, 組A と組B に分ける方法は 2通り (2) (1) A,Bの区別をなくして (2組の分け方)×2! = (A, B2組の分け方 ) 62÷2=31 (通り) このうち, Cには1枚も入れない方法は 24通り したがって 3'-2'=81-16=65 (通り) A, B, C の3個の箱のどれかにカード3, 4, 5, 6を入 れる方法は 34通り (3) カード 1, カード2が入る箱を, それぞれ A, B とし, (3) 問題文に「区別できな 残りの箱をCとする。 い」 とあっても、 カード (1) の 62通りの分け方のうち、 例えば (1) で B 1が入る箱, カード2が 入る箱, 残りの箱, と区 別できるようになる。 は右の①、②の分け方は別のもの (2通 り)である。 ① 4 2.3 ②2 41 5. 6 1 12. 6 2.3 て Cが空となる入れ方は、 A,Bの2個から4個取 る重複順列の総数と考え 2通り しかし, (2) では組 A,Bの区別がなくなる から ①と②は同じもの (1通り) となる。 62 ④ 円順列・重複順列 ③ 21 習(1)7人を2つの部屋 A, B に分けるとき,どの部屋も1人以上になる分け方は全 部で何通りあるか。 (2) 4人を3つの部屋 A, B, C に分けるとき, どの部屋も1人以上になる分け方は 全部で何通りあるか。 (3) 大人4人, 子ども3人の計7人を3つの部屋 A, B, C に分けるとき どの部屋 も大人が1人以上になる分け方は全部で何通りあるか。 p.366 EX 18 (1)の組分け ①〜62のうち,組の区別をなくすと同じになるものが2通りずつあ るから,(2)では÷2としているのである。 組分けの問題での注意点2 組分けの問題では, 分けるものや組に区別があるかないかをしっかり見極める ことも重要である。 例えば、 例題 21(1), (2) ではカードに区別があるが, 仮にカー ドの区別がないとした場合は, 結果はまったく異なるので、注意が必要である。 詳しくは解答編 .259 の検討参照。 カードの枚数だけに注目し, 数え上げによって 分け方を書き上げると, (1) では5通り, (2) では3通りとなる。 -6327 さ 6×3=3

解決済み 回答数: 1
数学 高校生

数学A 順列 円順列・重複順列 どうやって計算したら赤で線をひいいたところの答えになるかがわかりません。 教えてくださると助かります!

1章 364 基本 21 組分けの問題 6枚のカード1,2 3 4 5 6 がある 慣列 00000 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし、各組に 少なくとも1枚は入るものとする。 (2)6枚のカードを2組に分ける方法は何通りあるか。 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。 ただし、空の箱はないものとする。 指針 (1) 6枚のカードおのおのの分け方は,A,Bの2通り。 2通り 23456 ズーム UP 重複順列,組分けの問題に関する注意点 2321337 365 前ページの例題21 や p.372 例題 25 のように, 組分けの問題には、いろいろなタイプがあ り問題の設定に応じて考えていく必要がある。 例題21では重複順列の考えを利用して いるが,その内容について更に掘り下げて考えてみよう。 ●重複列の考え方 異なるn個のものから個取る重複順列の総数は n (*) 2222 123456 ↑ 1 2 重複順列で ↑ ↑ ただし,どちらの組にも1枚は入れるから, 全部を -2 AまたはBに入れる場合を除くために A A A B B or or or or or or B B B B 単に公式として覚えているだけでは,nとrを 取り違えて,例えば (1) は, 26でなく62としてしまうミス 通通通通通通 りりりりりり (2) (1) で, A, B の区別をなくすために ÷2 (3)3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 箱 ABC カード 12 (3456 を A, B, C に分ける) -(Cが空箱になる = 3, 4, 5, 6をAとBのみに入れる) 3,4,5,6から少なくとも1枚 CHART 組分けの問題 0個の組と組の区別の有無に注意 (1) 6枚のカードを, A, B2つの組のどちらかに入れる方 | A,Bの2個から6個取 る重複順列の総数。 法は 2°=64(通り) 64-262 (通り) をしやすい。 よって、慣れないうちは指針の (1) にあるような図, または上の図の ように、各位置に何通りの方法があるかがわかるような図をかくとよい。 また、図をかくことで, 重複順列は,積の法則を繰り返し利用したものになって いることがわかり, (*) の式の原理をしっかり理解するのにも役立つ。 組分けの問題での注意点 1 組分けの問題では, 0個となる組が許されるかどうかにまず注目しよう。 (1)では, 「各組に少なくとも1枚は入る」 0枚の組はダメ) という設定であるか ら, A0枚, 組B:1~6の6枚) の分け方と (A1~6の6枚組B: 0枚) の分け方を除く必要がある。 ここで, 仮に 「1枚も入らない組があってもよ 「い」 (0 枚の組もOK) という設定ならば, 答えは2°=64 (通り) となる。 なお,(2)では,一方の組に6枚のカードすべてを入れると組の数は1となり, 2組という条件を満たさない。 すなわち, 問題文に断り書きはないが,「0枚の組 は許されない」という前提条件のもとで考えていくことになる。 (2) において ÷2 する理由 解答 このうち, A,Bの一方だけに入れる方法は よって, 組A と組B に分ける方法は 2通り (2) (1) A,Bの区別をなくして (2組の分け方)×2! = (A, B2組の分け方 ) 62÷2=31 (通り) このうち, Cには1枚も入れない方法は 24通り したがって 3'-2'=81-16=65 (通り) A, B, C の3個の箱のどれかにカード3, 4, 5, 6を入 れる方法は 34通り (3) カード 1, カード2が入る箱を, それぞれ A, B とし, (3) 問題文に「区別できな 残りの箱をCとする。 い」 とあっても、 カード (1) の 62通りの分け方のうち、 例えば (1) で B 1が入る箱, カード2が 入る箱, 残りの箱, と区 別できるようになる。 は右の①、②の分け方は別のもの (2通 り)である。 ① 4 2.3 ②2 41 5. 6 1 12. 6 2.3 て Cが空となる入れ方は、 A,Bの2個から4個取 る重複順列の総数と考え 2通り しかし, (2) では組 A,Bの区別がなくなる から ①と②は同じもの (1通り) となる。 62 ④ 円順列・重複順列 ③ 21 習(1)7人を2つの部屋 A, B に分けるとき,どの部屋も1人以上になる分け方は全 部で何通りあるか。 (2) 4人を3つの部屋 A, B, C に分けるとき, どの部屋も1人以上になる分け方は 全部で何通りあるか。 (3) 大人4人, 子ども3人の計7人を3つの部屋 A, B, C に分けるとき どの部屋 も大人が1人以上になる分け方は全部で何通りあるか。 p.366 EX 18 (1)の組分け ①〜62のうち,組の区別をなくすと同じになるものが2通りずつあ るから,(2)では÷2としているのである。 組分けの問題での注意点2 組分けの問題では, 分けるものや組に区別があるかないかをしっかり見極める ことも重要である。 例えば、 例題 21(1), (2) ではカードに区別があるが, 仮にカー ドの区別がないとした場合は, 結果はまったく異なるので、注意が必要である。 詳しくは解答編 .259 の検討参照。 カードの枚数だけに注目し, 数え上げによって 分け方を書き上げると, (1) では5通り, (2) では3通りとなる。 -6327 さ 6×3=3

解決済み 回答数: 1
数学 高校生

なんでこの問題Cなんですか!Pだと思いました

V 372 解答 基本例題 25 組分けの問題 (2) ・・組合せ 9人を次のように分ける方法は何通りあるか。 (1) 4人、3人、2人の3組に分ける。 (2) 3人ずつ, A,B,Cの3組に分ける。 (3) 3人ずつ3組に分ける。 (4) 5人、2人、2人の3組に分ける。 指針 組分けの問題では,次の ①, ② を明確にしておく。 ① 分けるものが区別できるかどうか ② 分けてできる組が区別できるかどうか 「9人」は異なるから,区別できる。 特に,(2) (3)の違いに注意 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人の組をB, 2人の 組をCとすることと同じ。 (2) 組にA,B,C の名称があるから, 3組は区別できる。 (3) 3組は人数が同じで区別できない。 (2) , A, B, Cの区別をなくす。 1000 る3個の順列の数3! 通りの組分け方ができるから, [(2) の数] ÷3! が求める方 法の数。 (4) 2つの2人の組には区別がないことに注意。 なお, p.364 基本例題21との違いにも注意しよう。 →3人ずつに分けた組分けのおのおのに対し, A, B, Cの区別をつけると → (1)9人から4人を選び,次に残った5人から3人を選ぶ と、残りの2人は自動的に定まるから, 分け方の総数は 9C4×5C3=126×10=1260 (通り) (2) A に入れる3人を選ぶ方法は C3通り Bに入れる3人を,残りの6人から選ぶ方法は 6C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は C3X6C3=84×20=1680 (通り) (sCaXoCs) -31=1680÷6=280 (通り) (4) A (5人), B(2人) (2人)の組に分ける方法は C5×4C2通り B,Cの区別をなくすと、 同じものが2通りずつでき るから, 分け方の総数は ( 9C5×4C2) +2!=756÷2=378 (通り) (1) 2人,3人,4人の顔に んでも結果は同じになる C4×53×2C2としても 同じこと。 ズーム UP (3) (2) , A, B, Cの区別をなくすと, 同じものが3! 通 次ページのズームUP りずつできるから 分け方の総数は 照。 例題25C <次ページのズーム (PF 昭

未解決 回答数: 0
数学 高校生

これの⑶ほんとに意味わかんないです、、 教えてくださいー😭

364 基本例題 21 組分けの問題 ( 1 ) 6枚のカード1,2,3,4,5,6がある。歌 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし,各組に 少なくとも1枚は入るものとする。さび (2) 6枚のカードを2組に分ける方法は何通りあるか。 基本20 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。ただし,空の箱はないものとする。 指針 重複順列 → (1) 6枚のカードおのおのの分け方は, A,Bの2通り。 重複順列で 2通り ただし、どちらの組にも1枚は入れるから, 全部を A またはBに入れる場合を除くために -2 (2) (1) で, A,Bの区別をなくすために ÷2 (3) 3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 (3,456 を A, B, C に分ける) (Cが空箱になる = 34,56をAとBのみに入れる) CHART 組分けの問題 0個の組と組の区別の有無に注意 このうち, A,Bの一方だけに入れる方法は 2通り よって, 組 A と組Bに分ける方法は 64-262 (通り) (2) (1) A,Bの区別をなくして 1 2 3 4 ↑ ↑ ↑ A A or or B B (1) 6枚のカードを,A,B2つの組のどちらかに入れる方 | A,Bの2個から6個取 解答 法は 2664 (通り) る重複順列の総数。 24通り AAA or or or or BBB B 3,4,5,6から少なくとも1枚- 練習 (1) 7人を2つの部屋 A,Bに分けるとき,どの部屋も1 ③ 21 望を 箱 カード A B C 1 2 62÷2=31 (通り) (3) カード1, カード2が入る箱を,それぞれA,Bとし, (3) 問題文に「区別できな 残りの箱をCとする。 A,B,Cの3個の箱のどれかにカード 3,4,5,6を入 れる方法は 34通り い」とあっても、カード 1が入る箱, カード2が 入る箱,残りの箱,と区 別できるようになる。 Cが空となる入れ方は, このうち,Cには1枚も入れない方法は したがって 3-24=81-16=65 (通り) A,Bの2個から4個取 る重複順列の総数と考え て 24通り (2組の分け方) ×2! =(A,B2組の分け方) L△

回答募集中 回答数: 0
数学 高校生

写真の質問に答えてください!

38 第 基礎例題 19 図形の個数と組合せ □ (1) 正五角形の3個の頂点を結んでできる三角形は何個あるか。 また、そ (2) 正五角形の2個の頂点を結んでできる線分は何本あるか。 [→発展別 うち正五角形と2辺を共有する三角形は何個あるか。 直線 図形の個数 図形の決まり方に注目 このような図形の個数を考える場合, 特に断りがなければ、できる図形が ものや長さの等しい線分なども, 頂点が異なれば 「異なるもの」と考える。 ****** CHART GUIDE 解答 (1) 正五角形のどの3個の頂点も一直線上にないから, 3個の頂 点を選ぶと1つの三角形が決まる。 よって、正五角形の3個の頂点を結んでできる三角形の個数は 5C3-5.4.3 3.2.1 -10 (個) また、正五角形と2辺を共有する三角形は、正五角形の1個の 頂点に対して1個決まるから, その個数は 5個 (2) 正五角形の5個の頂点のうち、2個の頂点を選ぶと1本の線 分が決まるから (1) 三角形 → 一直線上にない3点が与えられると1つ決まる。 (2) 線分 2点が与えられると1つ決まる。 Lecture 図形の個数と組合せ 三角形や直線(線分)の個数を求める問題では次のことに注意しよう。 (3) 三角形… 一直線上にない3点が与えられると1つ決まる。 例えば,どの3点も一直線上にない個の穴があるとき. 三角形の個数は nC3 異なる2点が与えられると1本引ける。 例えば,どの3点も一直線上にな 直線の本数は nC2 注意 n個の点のうち,ある3点が一直線上にあれば,引ける直 正解 線の本数は異なってくる。 正五角形のどの3 頂点も一直線上にな 41 正七角形が 基礎例題 分けの方法の数 ロロロ 色の異なる6枚の色紙を次のように分ける方法は何通 (1) 3枚,2枚, 1枚の3組に分ける (2) A,B,Cの3組に2枚ずつ分ける CHART GUIDE とき,引ける =10 (本) 2-1 どうして、正五角形の場 Legene 210 「ダメなので (1) 1組目に3枚, 2組目に2枚, 3組目に残りの1枚を与える。 (3) (2)と違い, 3つの組は同じ枚数で区別がない。 そこで, (2)において3つの組の区別をなくすと考える。 BC3通り (1) まず, 6枚から3枚を選ぶ方法は 次に、残りの3枚から2枚を選ぶ方法は 3C2通り 残りの1枚は1通りに定まるから, 求める方法の総数は ×3=60 (通り) 6.5.4 eCg×3C2=3.2.1 組分けの問題 分けるものの区別、 組の区別を明確に (2) (1)と同様に考えて 6C2X4C2=- (3) (2) の分け方で, A, B, 3! 通りずつできるから 90÷3!=15 (通り) (3) において, 3! で割る理由 上の例題で6枚の色紙を1, 2, 3,456 とする。 290通りのうち,例えば, ①:1,2, ① ② A,B,Cの区別 いえるから 解 6.5 2.TX |答 4.3 2.1 (3) 2枚 =90(通り) 2:3③:56 をA,B,Cに分ける方法は, 右の3! 通り Cの区別をなくすと, 同じものが を1列に並べる順列の総数 なくすとこれらは同じ組分けに 90÷3! で (3) の答えがでる。 組合せ A: 1, 2 A:1,2 A: 3, 4 A: 3, 4 A: 5, 6 A:5,6 に分ける (1) 3枚 2枚、1枚に 分ける順序はどう変え てもよい。 すなわち 6C3X3C1, 6C2X4C3, 6C2X4C1, 6C1X5C3, 6C1X5C2 のどれを計算してもよ い。 結果はすべて同じ になる。 39 ←個の組の区別をなく す → ! で割る B : 3, 4 B: 5, 6 B:1,2 B: 5, 6 B: 1, 2 B : 3, 4 (3) 14 EX 42 12冊の異なる本を次のように分ける方法は何通りあるか。 (1) 5冊, 4冊, 3冊の3組に分ける C: 5, 6 C: 3, 4 C: 5, 6 C: 1, 2 C: 3, 4 C: 1, 2 (2) 4冊ずつ3人に分ける

解決済み 回答数: 1
数学 高校生

写真の質問に答えてください!

364 基本例題 21 組分けの問題 (1) … 重複順列 6枚のカード 12 3 4 5 6 がある。 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし,各組に 少なくとも1枚は入るものとする。 (2) 6枚のカードを2組に分ける方法は何通りあるか。 基本20 (3) / 6 枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。ただし、空の箱はないものとする。 指針 (1) 6枚のカードおのおのの分け方は, A,Bの2通り。 2通り →重複順列で ただし、どちらの組にも1枚は入れるから, 全部を -2 AまたはBに入れる場合を除くために ÷2 (2) (1) で, A, B の区別をなくすために (3) 3個の箱をA, B, C とし, 問題の条件を表に示すと、 右のようになる。 よって、 次のように計算する。 (3,4,56をA, B, C に分ける) (Cが空箱になる 3 4 5 6をAとBのみに入れる) CHART 12 ↑ A or B B (2) (1) A,Bの区別をなくして 3 4 5 6 ↑ or B 箱 カード 組分けの問題 0個の組と組の区別の有無に注意 A A A B C 1 2 3,4,5,6から少なくとも1枚 or or B BB (1) 6枚のカードを,A,B2つの組のどちらかに入れる方 | A,Bの2個から6個取 法は 2°=64(通り) る重複順列の総数。 解答 このうち, A, B の一方だけに入れる方法は 2通り よって, 組Aと組Bに分ける方法は 64-262 (通り) (2組の分け方)×2! = (A, B2組の分け方) 62÷2=31 (通り) (3) カード 1, カード2が入る箱を、 それぞれ A, B とし, (3) 問題文に「区別できな 残りの箱をCとする。 い」とあっても、カード 1が入る箱, カード2が 入る箱, 残りの箱, と区 別できるようになる。 Cが空となる入れ方は, A,Bの2個から4個取 る重複順列の総数ん 通 A,B,Cの3個の箱のどれかにカード 3,4,5,6を入 れる方法は 34通り このうち, Cには1枚も入れない方法は 24通り したがって 3'2'=81-16=65 (通り) 【練習 (1) 7人を2つの部屋 A, B に分けるとき,どの部屋も1人以上になる分け方は全 部で何通りあるか。 ③ 21 H (2) 4人を3つの部屋 A, B, C に分けるとき,どの部屋も1人以上になる分け方は 全部で何通りあるか。 (3) 大人4人、子ども3人の計7人を3つの部屋 A, B, C に分けるとき、どの部屋 も大人が1人以上になる分け方は全部で何通りあるか。 P.366 EX 18 1 重複順列,組分けの問題に関する注意点 前ページの例題21 やp.372 例題 25 のように, 組分けの問題には,いろいろなタイプがあ 問題の設定に応じて考えていく必要がある。 例題21では重複順列の考えを利用して り、 いるが、その内容について更に掘り下げて考えてみよう。 重複順列の考え方 異なるn個のものからr個取る重複順列の総数はn 222 (*)のnを単に公式として覚えているだけでは, nr を 通通通通通通 2 取り違えて,例えば (1) では, 26 でなく62としてしまうミス をしやすい。 よって、慣れないうちは指針の (1) にあるような図, または上の図の ように,各位置に何通りの方法があるかがわかるような図をかくとよい。 また,図をかくことで, 重複順列は,積の法則を繰り返し利用したものになって ていることがわかり, (*)の式の原理をしっかり理解するのにも役立つ。 BIO P この問題である。 1 2 3 TTTT↑ 組分けの問題での注意点1 組分けの問題では, 0 個となる組が許されるかどうかにまず注目しよう。 (1) では,「各組に少なくとも1枚は入る」 (0枚の組はダメ)という設定であるか ら,(組A :0 枚,組B:1~6の6枚) の分け方と(組A: 1~6の6枚組B: 0枚)の分け方を除く必要がある。ここで、仮に「1枚も入らない組があってもよ い」(0 枚の組も OK)という設定ならば、答えは28=64 (通り)となる。 なお,(2) では,一方の組に6枚のカードすべてを入れると組の数は1となり, 2組という条件を満たさない。すなわち, 問題文に断り書きはないが,「0枚の組 は許されない」という前提条件のもとで考えていくことになる。 (2) において ÷2 する理由 (1) の 62 通りの分け方のうち、 例えば (1) で は右の①,②の分け方は別のもの ( 2 通 り) である。 62 しかし, (2) では組 A,Bの区別がなくなる : から、①と②は同じもの (1通り) となる。 のうち組の区別をなくすと同じになるものが2通りずつあ しているのである。 A to tan りりりりりり 15 6 1 B 15 6 3 分け方を書き上げると、(1)では5通り (2)では3通りとなる。 365 : 分けの問題ではしかるものや組に区別があるかないかをしっかり見極める ことも重要である。 例えば、 例題 21 (1), (2) ではカードに区別があるが,仮にカー 結果固まったく異なるので、注意が必要である。 259の検討参照。 カードの枚数だけに注目し, 数え上げによって 1 嬉し 章 4 円順列・重複順列 まる。 数である 数である D, 1, -(m- の倍数 司であ EC 割っ 「公約 めるに する。 て です V= 法数 ゆるき が

解決済み 回答数: 1
1/17