学年

質問の種類

数学 高校生

(1)について質問です。 どうして判別式Dは0以上になるのでしょうか? 2つの解と書かれているので重解の場合は含まれないと思いました。 重解の場合も含めていいのでしょうか?

3 基本 52 2次方程式の解の存在範囲 ①①①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように,定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく, 他の解は3より小さい。 p.87 基本事項 89 指針 2次方程式x²-2px+p+2=0の2つの解をα,βとする。 (1) 2つの解がともに1より大きい。→α-1>0 かつβ-1>0 (2)1つの解は3より大きく、他の解は3より小さい。 → α-3 と β-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα, βとし, 判別解 2次関数 解答 別式をDとする。 D =(−p)² −(p+2)= p²−p−2=(p+1)(p−2) 4 解と係数の関係から α+β=2p, aβ=p+2 (1) α>1,β>1であるための条件は D≧ かつ (α-1)+(β-1)>0 かつ (α-1) (β-1) > 0 (p+1)(p-2)≥0 f(x)=x-2px+p+2 のグラフを利用する。 (1) 0(+1)(p-2)0. 軸について x=p > 1, f(1)=3-p>0 から2≦p<3 YA x=py=f(x) D 0 から よって p≦-1,2≦p ① (α-1)+(β-1)>0 すなわち α+β-2>0 から 2p-2>0 よって p>1 ...... ② 3-p +α P 0 1 B x (α-1) (−1)>0 すなわち αβ-(a+β) +1>0 から p+2-2p+1> 0 よって p<3 ...... 求める』の値の範囲は, 1, 2, ③の共通範囲をとって 2≦p<3 ② ① 1 2 3 Þ 2 2章 解と係数の関係、解の存在範囲 (2) f(3)=11-5p<0から 11 p>1

解決済み 回答数: 1
数学 高校生

二次方程式の質問です チャートの解説とは違う組み合わせで解いたんですけど答えが合わないです この解き方がダメな理由を教えてください

212 1. 基本 例 129 2次方程式の解と数の大小 (2) 00000 | 2次方程式 ax-(a+1)x-a-3=0が,-1<x<0, 1 <x<2の範囲にそれぞれ 1つの実数解をもつように、定数αの値の範囲を定めよ。 指針 f(x) =ax²-(a+1)x-a-3 (α0) として p.207 基本事項2 重要 13 [a<0] [a>0] y=f(x) グラフをイメージすると, 問題の条件を満 たすには y=f(x) のグラフが右の図のよ うになればよい。 + 0 1 すなわち f(-1) f (0) 異符号 L 2x O [f(-1)(0)01 かつ f(1) f (2) が異符号 [f(1)f(2) <0] である。 αの連立不等式 を解く。 T TO 0 ly=f(x) 2次方程式 128 129のように、2枚 豚の存在明の問題 このの存在範囲の問題につい 方式の実数解を 方程式(x)=0がわくと gの範囲に共有 + CHART 解の存在範囲 f(b)f(g) <0ならとの間に解(交点) あり f(x)=ax²-(a+1)x-a-3とする。 ただし α≠0 f(-1)f(0) <0から 2次方程式であるから、 (x2 の係数) ≠0 に注意 注意 指針のグラフから かるように,a>0 の問題は、題 126, 一方程 方程式(x) の範囲に実 ●グラフが指定され 2次関数のグラフ [1] 判別式 D この3つの条件に 放物線y=f であるとき, 件となる。 題意を満たすための条件は,放物線y=f(x) が-1<x<0, 解答 1 <x<2の範囲でそれぞれx軸と1点で交わることである。 すなわち f(-1)(0) <0 かつ f(1)(2)<0 ここで f(-1)=a(-1)-(a+1) (−1)-a-3=a-2, が下に凸),a< 0 (グラ f(0)=-a-3, f(1)=α・12-(a+1) ・1-a-3=-a-4, が上に凸) いずれの場合 f(-1)f(0) <0かつ [1]判別 f(2)=α・22-(a+1)・2-a-3=a-5 (a-2)(-a-3)<0 ゆえに (a+3)(a-2)>0 よって a<-3, 2<a また,f(1)(2)< 0 から ...... ① ゆえに (-a-4)(a-5)<0 (a+4)(a-5)>0 よって a<-4,5<a ...... ① ② の共通範囲を求めて a<-4,5<a これは α=0を満たす。 f(1)f(2)<0 が、題意を満たす条件で る。 よって, α>0のとき α < 0 のとき などと場合 けをして進める必要はな を意味す ●グラ 上の p する [2] 軸の [3] [1] [2] -4-3 2 5

解決済み 回答数: 2
数学 高校生

127番の問題がわからないです! ただ一つの解を持つ時に3と4に別れるのはyの値の積が0になる時を考えてるのかなと思ったのですが、なぜ126番の問題だとそれを考えなくても良いのかが全くわからないです 誰か教えて欲しいです!すみませんがよろしくお願いします🙇‍♂️

196 基本 例題 126 2次方程式の解と数の大小 (2) 00000 2次方程式 ax²-(a+1)x-a-3=0が, -1<x<0, 1 <x<2の範囲でそれぞれ つの実数解をもつように,定数 αの値の範囲を定めよ。 重要 12 p.191 基本事項 指針 f(x) =ax²-(a+1)x-a-3 (α≠0) としてグラ [a>0] フをイメージすると, 問題の条件を満たすには y=f(x) のグラフが右の図のようになればよい。 すなわち f(-1) f (0) 異符号 la<0 y=f(x) e 0 1 + 0 2x [f(-1)(0) <0] y=f(x) かつ f(1) f (2) が異符号 [f(1)(2)<0] である。 αの連立不等式を解く。 CHART 解の存在範囲 f(p)f(g) <0ならpgの間に解 (交点)あり 解答 f(x)=ax2-(a+1)x-a-3とする。 ただし, a≠0 題意を満たすための条件は, 放物線y=f(x) が-1 <x<0, 1 <x<2の範囲でそれぞれx軸と1点で交わることである。 すなわち ここで f(-1)f(0)<0 f(1)f(2)<0 f(-1)=α(−1)-(a+1) (−1)-a-3=a-2, f(0)=-a-3, f(1)=α12-(a+1) ・1-a-3=-a-4, f(2)=α・22-(a+1) ・2-a-3=a-5 f(-1)f(0) <0から ゆえに よって (a-2)(-a-3)<0 (a+3)(a-2)>0 また,f(1)(2)< 0 から a<-3, 2<a ...... ① 2次方程式であるから、 (x2の係数) 0 に注意 注意指針のグラフからむ るように,a>0 グラフ に凸), a<0(グラブ 凸) いずれの場合も F(-1)/(0) <0 f(1)(2)< が、題意を満たす条件で よって、a>0のとき のときなどと場合分け て進める必要はない。 ゆえに よって (-a-4)(a-5)<0 (a+4)(a-5)>0 a<-4, 5<a... ① ② の共通範囲を求めて a<-4,5<a これはα=0を満たす。 -4-3 2 5

解決済み 回答数: 1
1/57