学年

質問の種類

物理 高校生

この問題の(3)の後半についてで、解答には力学エネルギーが保存すると書いてあるのですが、保存する理由は、小球と台が受けてる保存力以外の力は、台がストッパーSから受けてる力のみで、ストッパーは動かないのでF【N】×0【m】=0【J】より、仕事をしていないので、小球と台のに物体... 続きを読む

17 曲面AB と突起 Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパー S に 接している。 Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量m(m <M) の小 A 小球 m h 台 S M W B 床 床 39 球を静かに放した。 小球は曲面を滑り降りて突起 Wに弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな 重力加速度を①とする。 突起 Wと衝突する直前の小球の速さはいくらか。 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り,最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で,小球をA点 で静かに放す。Ins Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
物理 高校生

至急お願いします🙇‍♀️🙇‍♀️🙇‍♀️ (2)で、向心力は円の中心に向かう向きに働く力だから、上側にはたらくと思ったんですけど、どうして下向きなんですか??

。 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。 斜面 の最下点は半径rの円の一部になっている。 重力 加速度の大きさをg として 次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 om 1501 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 指針 (1) では, 力学的エネルギー保存の 法則から速さを求める。 この結果を用いて, (2) では,最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, 1 mgh= mv2 2 v=√2gh (2) 重力と垂直抗力の合力が、 最下点での小物 基本問題 213 02 m-=N-mg 体の向心力になる。 半径方向の運動方程式は, AN JON r (1)の結果を用いて, N=mg (1+ (1+2/7 ) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において, 等速円運動と同様の運 動方程式を立てることができる。

解決済み 回答数: 1
物理 高校生

(2)の解説にW=−0.50×1.0×9.8×l=−4.9 とありますがWの硬式はW=fxなのに何故9.8や動摩擦係数が入ってくるのですか? 何故そのあと 1/2×1.0×0²-1/2×1.0×7.0²=−4.9l l=7.0²/2×4.9 という式になるのですか? 物理基... 続きを読む

基本例題 24 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があ らい水平面がある。 点Aより左側のなめ らかな水平面上で, ばね定数100N/m の ばねの一端を固定し,他端に質量 1.0kg -0.70m→ [-00000 自然の長さ→ 109,110 解説動画 -I [m〕- A あらい水平面 B の物体を置く。 ばねを 0.70m だけ縮めて手をはなすと, 物体はばねが自然の長さ になった位置でばねから離れた。重力加速度の大きさを9.8m/s2 とする。 (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み, 点Aを通過して点Bで停止した。 (2) 物体とあらい面との間の動摩擦係数が 0.50 のとき, AB間の距離は何mか。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) 解答 (1) 最初に物体のもつ弾性力による位置エ ネルギーはU=1/12/ -×100×0.702J ばねから離れた後に物体のもつ運動エ ネルギーは K=1×1.0×2 [J] ゆえにv=√100×0.70°=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l = -4.92 [J] 物体の力学的エネルギーの変化= W より 1/12×1.0×0°-12×1.0×7.0°=-4.9ℓ 力学的エネルギー保存則より 7.02 ゆえに1= -=5.0m +1/2×100×0.70°= 1/2×1.0×μ+0 2×4.9

解決済み 回答数: 1
物理 高校生

・1枚目の写真の基本例題21(3)の解説で 式は0+1/2×50×x²とありますが(2)のB地点での位置エネルギーは0なのに、なぜ(3)ででてくる位置エネルギーはなぜ0じゃないんですか? ・2枚目の写真の基本例題22(2)の問題で解説には運動エネルギーと重力による位置エネル... 続きを読む

48 第1編■運動とエネルギー 基本例題 21 力学的エネルギーの保存 104~108 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつな がっており、点Cにばね定数50N/m の長いばねが つけてある。 水平面 BC から 2.5mの高さの点Aに 質量 2.0kgの物体を置き, 静かにすべり落とした。 ただし、重力加速度の大きさを9.8m/s2 とし, 水平面 BC を高さの基準にとる。 (1) 点Aでの物体の力学的エネルギーは何Jか。 2.5m B C (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力) による運動では, 力学的エネルギー (運動エネルギー Kと位置エネルギーUの和) は一定に保たれる。 すなわち K+ U =一定 解答 (1) KA+ UA=0+2.0×9.8×2.5 =49 J (3)(2)と同様に, K+U=KA+UA (2) 力学的エネルギー保存則により ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 KB+UB=KA+UA よって 0+1×50×x=49 1 よって -×2.0×2+0=49 2 v2=49 x²= = 49_7.02 ゆえに x=1.4m ゆえにv=7.0m/s 25 5.02

解決済み 回答数: 1
物理 高校生

問5で、台車から手を離した位置を基準にしているのに−mgAsin30°となっているのはなぜですか??

千葉大理系前期 2023年度 物理 31 図のように、傾きの角30°のなめらかな斜面上に質量mの台車が置かれ, そ の台車には軽く伸び縮みしない糸の一端が取り付けられている。 その糸のもう一 端は、斜面の上端に固定された定滑車と床と軽いばねでつながれた動滑車を介 して、天井に取り付けられている。 なお, 台車, 定滑車,動滑車,糸は,すべて 同一の鉛直面内にあり, 台車から定滑車までの糸は斜面と平行, 定滑車から動滑 車および動滑車から天井までの糸は鉛直で, 糸がたるむことはないものとする。 また、2つの滑車は軽く、なめらかに回るものとする。 台車が静止しているときの位置をつり合いの位置とする。図のように,このつ り合いの位置から,斜面の最下点までの距離をLとする。なお,距離L,なら びに、台車から定滑車までの距離は、後述する単振動による台車の振幅に対し て,十分に長いものとする。また,ばね定数をk, 重力加速度の大きさをgとす る。 空気抵抗や摩擦は無視できるものとして、以下の問いに答えなさい。ただ し、解答に用いる物理量を表す記号は,問題文中に与えられているもののみとす る。 a tut | 天井 重力の向き 定滑車 台車 m 食じめに、 ように L 30° 図 0000 動滑車 ばねん 床

解決済み 回答数: 1
1/74