学年

質問の種類

数学 高校生

なぜ、部分分数分解をする時、赤い丸のところのように分子の次数を分母の次数より1下げるのですか?回答よろしくお願いします。

次の不定積分を求めよ。 2x2-x-2 -dxh (1) x+1 (2) S dx (x+1) (2x+1) (3) a √ x²(x-1) dx 思考プロセス (1)~(3) いずれも f'(x) f(x) -の形ではない。 次数を下げる (1)ReAction(分子の次数) ≧ (分母の次数)の分数式は、除法で分子の次数を下げよ IB 例題 17 (2)(3)分母が積の形 (x+1) (2x+1) +1)(2x int (2) 1 (3) x² (x-1) 八 数分解 a + x+1 2x1 子 (x)=xh(x)}(水)1 a, b, c の値を求める。 ax+b x2 C + a b + C x-1 x + x² x-1 Action » 分数関数の積分は、子の次数を下げ, 部分分数分解せよ 2 (1) S 2-x-2 dx = √(2x-3+x1)dx x 2 -3x + log|x +1+C_3 4 章 分子を分母で割ると 商2x-3, 余り1 不定積分 IIB 1 IIB 61 (x+1)(2x+1) はらうと a b + とおいて, 分母を 部分分数分解 x+1 2x+1 α(2x+1)+6(x + 1) = 1 (2a+b)x+a+6-1=0 係数を比較すると,a=-1,6=2 より dx (x+1)(2x+1) =+ S ( x + 1 + 2x²+ 1 ) dx +1)αx -log|x + 1|+log|2x + 1| + C 2x+1 =log| +C x+1 IB 61 (3) 1 a b C = + + とおいて, 分母をはら x²(x-1) x x² x-1 うと ax(x-1)+6(x-1)+cx2 =1 (a+c)x2+(-a+b)x-6-1 = 0 係数を比較すると,a = -1, b = -1, c = 1 より S dx x(x-1) = S ( = = = = = 1 + x2 x-1 11) dx == -log|x|+ x 1/1/+1001+0 +log| 142次の不定積分を求めよ。 1 +log|x-1|+C +C pal (2a+b)x+α+6-1 = 0 はxについての恒等式で あるから f2a+b=0 la+6-1=0 (1) S 2 -dx 2x+1 =2.1/ = 2.1 log|2x+1|+C 部分分数の分け方に注 意する。 xについての恒等式であ るから fa+c=0 {-a+b=0 l-b-1=0 yolx (E) dx 3x+4 dx (3) rr+12

解決済み 回答数: 1
数学 高校生

分数関数の問題です。 (2)がわかりません。 自分の回答だと、x<-5が含まれていますが、回答にはありません なぜ、-5<x<-3なのでしょうか?

|赤 ● ● 分数 基本 1 基本例題 3 本 2 (1) 関数y= x+3 のグラフと直線 y=x+4 の共有点の座標を求めよ。 0000 (2) 不等式 指針▷ (1) 2 <x+4 を解け。 x+3 共有点 実数解 すなわち, 分数関数のグラフと直線の式からyを消去し た方程式 2 x+3 x+4の実数解が共有点のx座標である。 (2) 不等式f(x)<g(x)の解⇔y=f(x) のグラフがy=g(x)のグラフより下 グラフを利用して解を求める。 にあるようなxの値の範囲 ......... なお、分数式を含む方程式・不等式を分数方程式・分数不等式という。分数方程式・分 数不等式では,(分母)0 というかくれた条件にも注意が必要である。 HART 分数不等式の解 グラフの上下関係から判断 解答 2 y= ...... ①, y=x+4 x+3 ② とする。 + 2 (1) ①,② から y =x+4 x+3 4 両辺に x+3を掛けて -4 ---2 ◆y を消去。 2次方程式に帰着される ただし, (分母) ( すなわ ちxキー3という条件がか くれている]。 -3 -20 x -1 2=(x+4)(x+3) 整理して ゆえに = 0 x2+7x+10 (x+2)(x+5)=0 (1) よって x=-2, -5 ② に代入して x=2のとき y=2, 2,-5は -の分 2 x+3 x=-5のとき y=-1 したがって, 共有点の座標は (-2, 2), (-5, -1) 母を0としないから、方程 2 x+3 -=x+4の解である。 (2) 関数 ① のグラフが直線②の下側 にあるようなxの値の範囲は,右の 図から -5<x<-3,-2<x ①yA (1) のグラフを利用。 x≠-3に要注意! 注意 グラフを利用しないで, 代数的 に解くこともできる。 この方法は次 「ページで学習する。 O x x=-3は, 関数 ① の定義 域に含まれない(つまり、 グラフが存在しない)。 練習 ②3 (1) (2)不等式4-22 のグラフと直線y=5x-6の共有点の座標を求めよ。 (2) 不等式 4x-35-6 を解け。

解決済み 回答数: 1
数学 高校生

【数Ⅲ】分数方程式 (2)についてです。 赤線で囲った表からなぜ解がわかるのですか?符号の見方?判断基準がわからないです。

基本 例題 5 分数方程式・不等式(2) 次の方程式、不等式を解け。 2 x 2 (1) -=0 x(x+2) 2(x+2) (2)x x-1 CHART & SOLUTION 分数方程式・不等式の解法 (分母)≠0 に注意 00000 基本 MOITUJO 23 TRAL 前ページの基本例題4ではグラフを利用する解法を学んだが、 この例題ではそれ以外の 法も扱う。 (分母)0 から (1) x=0, x+2≠0 (2) x-10 であることに注意。 (1) 分母を払って多項式の方程式を導き, (分母)=0 の解を除く。 (2)両辺に x-1 を掛け, x(x-1)<2 として,そのまま解答を進めてはいけない。第1の 正負により、不等号の向きが変わるからである。 分母を払わず, くりの形に整理して, A, B の因数の符号から決定。 B 別解 1 分母を払う前に, x-1の正負で場合分けをして, 2次不等式を解く。 別解 2 場合分けを避けるために, (分母)2 すなわち (x-1) (0) を両辺に掛けて、3次 不等式を解く。 別解 3 グラフを利用し,上下関係に注目 (基本例題 4と同様の方針)。 別解 1 [1] x-1 これを整理して よって これを解いて x>1 との共 [2] x-1<0 これを整理し よって これを解いて x<1 との共 [1], [2] から 別解 2 不等式 x よって ( ゆえに e よって これらは, 解答 別解 3 y=2 (1) x x(x+2) -=0 の両辺に2x(x+2)を掛けて分 20 2(x+2) x=. 母を払うと 4-x2=0 すなわち (x+2) (x-2)=0 これを解いて x=-2,2+xx x=-2 は,もとの方程式の分母を0にするから適さない。この確認が重要。 よって x=2 (2)から x(x-1)-2 2 x-1 ++2y= 整理して 因数分解 これを解 これらは x<- 2 x- x-1 <0 x-1 (分子)=x-x-2 ゆえに (x+1)(x-2) =(x+1)(x-2) + <0 x-1 この不等式の左辺をPとおき, x+1, x-1, x-2 とPの 符号を調べると、下の表のようになる。 ***(T)(S) (1) ②の よって, x -1... 1 ... 2 ◆ 分母分子の因数x+1, + + x+1 - 0 x-1 x-2 P 0 0 + - - + + + + + 0 + + 0 + (分母)0 よって、 求める解は x-1, 1<x<2 x1,x2の符号をも とに,Pの符号を判断す る。 (分母) 0 であるから, Pのx=1の欄は斜線。 PRACT 次の方 (1) 2- (

解決済み 回答数: 1
1/18