学年

質問の種類

数学 高校生

(1) 判別式Dに=がついてるのはなんでですか? 2つの解と書いてあるから重解になるのは変な気がします。教えてください。

基本 例題 52 2次方程式の解の存在範囲 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく,他の解は3より小さい。 指針 2次方程式 x2-2px+p+2=0の2つの解をα,βとする。 (1)2つの解がともに1より大きい。 → α-1>0 かつβ-1>0 p.87 基本事項 2 (2)1つの解は3より大きく,他の解は3より小さい。 → α-3とβ-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式x2-2px+p+2=0の2つの解をα,βとし,判別解 2次関数 解答別式をDとする。 D =(-p)² - (p+2)= p²-p-2=(p+1)(p-2) 4 解と係数の関係から a+β=2p,aß=p+2 (1) α>1,β>1であるための条件は D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (β-1)>0 D≧0 から よって (p+1)(p-2)≥0 p-1,2≦p ...... (a-1)+(β-1)>0 すなわち α+β-2>0 から 2p-2>0 よって>1 ...... f(x)=x2-2px+p+2 のグラフを利用する。 (1) 2 =(p+1)(p-20, 軸について x=p>1, f(1)=3-p>0 から 2≦p<3 YA x=py=f(x) ② 3-p + a 1 B x (α-1)(-1)>0 すなわち αβ- (α+β) +1>0 から p+2-2p+1>0) 89 2 2章 解と係数の関係、解の存在範囲 よって <3 ③ たす 1- 求めるかの値の範囲は, 1, 2, (SF (0. (2)_f(3)=11-5p < 0 から 11 ③の共通範囲をとって 123 P 2≤p<3 の解は (2) α<β とすると, α <3 <βであるための条件は (a-3)(B-3)<0 題意から α =βはあり えない。 すなわち αβ-3(a+β)+9 <0 250 ゆえに p+2-3・2p+9 < 0 よって 11 p> 5

未解決 回答数: 1
数学 高校生

(2)について質問です。 赤線部のように分かるのは何故ですか?🙏

152 基礎問 96 接線の本数 曲線 C:y=x-x 上の点をT(t, ピーt) とする. (1)点Tにおける接線の方程式を求めよ. (2)点A(a,b) を通る接線が2本あるとき,a,bのみたす関係式 を求めよ.ただし,a>0, b≠α-a とする. (3)(2)のとき、2本の接線が直交するようなa, 6の値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ます. だから、(1)の接線にA(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが、このときの 考え方は 95 注で学習済みです。 (3) 未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので, あと1つですが, それが 「接線が直交する」 を式にしたものです.接線の傾きは接点における微分係数(34) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3t-1)(x-t) 186 y=(3t2-1)x-2t3 (2)(1) の接線は A(a, b) を通るので b=(3t2-1)a-2t3 :. 2t-3at2+a+b= 0 …………(*) (*) が異なる2つの実数解をもつので, g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, (極大値)×(極小値) =0であればよい.95 注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから y=x-x| (t,t³-t) A(a,b)

未解決 回答数: 1
1/1000