学年

質問の種類

数学 大学生・専門学校生・社会人

波線部分が理解できません😿なぜそのように言い換えられるかが不明ですよろしくお願いします🙇

EN論法で, 数列の極限を攻略しよう! 数列と関数の極限 818 一般項an が与えられたとき,その極限liman の問題は高校でも既に勉 強しているね。でも,数列{an}が極限値 αをとることを示す厳密な証明 法として,大学の数学では,e-N論法をマスターする必要があるんだよ。 イプシロン・エヌろんぼう”と読む。 まず,この “e-N論法” を下に示す。 E-N論法 正の数をどんなに小さくしても,ある自然数 N が存在して, nがn≧Nならば,|an-a|< となるとき, liman=α となる。 n→∞ これだけでは,なんのことかわからないって? 当然だね。 ここは,大学 の数学を勉強する上で, みんなが最初にひっかかる第1の関門だから丁寧 に話すよ。 この意味は,正の実数を小さな値, たとえば, c = 0.001にとったとし ても,ある自然数Nが存在して, 数列 41, 2,., an-1, ax, ax+1, … のうち n≧Nのもの, すなわち ax, ax+1, に対して, α との差αが、 (N,N+1,... ε=0.001より小さく押さえられる, と言っているんだね。 ここで,正の実数は連続性と稠密 (ちゅうみつ)性をもつので,こ を限りなく0に近づけていくことができる。 それでもあるNが存在し n≧N をみたす an について, lan -α < が成り立つといっているわけ ら, n→∞のとき, α はαに限りなく近づいてlim=α と言える だね。 納得いった? 818

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

ε-N論法が分かりません。Nはどんな役割をするのですか?N>…,n≧Nを使う意味が分かりません。ページの例題を使ってわかりやすく教えて欲しいです。

●数列と関数の種用 ●r-N論法で、数列の極限を攻略しよう! 投川 a,が与えられたとき、その極限lima, の題は高校でも既に勉 る 強しているね。でも,数列{a}が極限値caをとることを示す厳密な証明 よ-N論法をマスターする必要があるんだよ。 法として,大学の数学では、 (*イブシロン,エスろんぼう"と読む まず、この-N論法”を下に示す。 -N論法 正の数をどんなに小さくしても,ある自然数Nが存在して、 がn2Nならば、la,-a|<e となるとき、 lim a,=a となる。 → 0 の がけでは、なんのことかわからないって?当然だね。ここは、大学 A の政学を勉強する上で,みんなが最初にひっかかる第1の関門だから丁寧 に、 に話すよ。 この意味は,正の実数eを小さな値,たとえば,=0.001にとったとし と ても,ある自然数Nが存在して,数列a, a2, …, axN-1, ax, ax+1, のうち、 理 nENのもの,すなわち an, av+1,…に対して,a との差|a@-al が, 埋 E=0.001 より小さく押さえられる,と言っているんだね。 集 ここで,正の実数eは連続性と潤密(ちゅうみつ)性をもつので、これ を限りなく0に近づけていくことができる。それでも,あるNが存在して、 と と 1ZNをみたす a, について, |a,-a|<eが成り立つといっているわけだか 2, 1→00のとき,a,はaに限りなく近づいて lim a,=a と言えるわけ だね。納得いった? → 00 でれでは,例題でさらに具体的に解説しよう。一般項a,が 4,=-」 (n=1, 2, 3, …)で与えられたとき,この極限を次のように求 n+1 りるやり方が,高校までの手法だったんだね。 13 L

解決済み 回答数: 1
1/2