学年

質問の種類

数学 高校生

(2)のとき判別式D<0という条件がないのはなぜですか?解説よろしくお願いします🙇‍♀️

の 基本 例題 52 2次方程式の解の存在範囲 ①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数」の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 2次方程式 x2-2px+p+2=0の2つの解をα,βとする。 指針 (1)2つの解がともに1より大きい。→α-1> 0 かつβ-1>0 p.87 基本事項 2 1つの解は3より大きく、他の解は3より小さい。 → α-3 と β-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし,判 | 別解 2次関数 解答別式をDとする。 f(x)=x2-2px+p+2 のグラフを利用する。 =(-p)²-(p+2)= p²-p-2=(p+1)(p-2) (+1)=2(1)=(+1)(p-2)≥0, 解と係数の関係から a+β=2p, aß=p+20pm=8 (1) α>1,ß>1であるための条件は+b) 軸について x=p>1, 38f(1)=3-p>0 D≧0 かつ (α-1)+(B-1)>0 かつ (α-1) (B-1)>0 から 2≦p<3 D≧0 から (p+1)(p-2)≥0 よって p≦-1, 2≦p ...... (α-1)+(β-1) > 0 すなわち α+β-20 から 2p-2>0. > + & p>1 ·· 23-p + Ca (α-1)(β-1)>0 すなわち aβ-(a+β)+1>0 から よって Op+2-2p+1>0) (E- <3 ...... ③ 求める』の値の範囲は, 1, ②, (ST ③ x=py=f(x) B x |(2) f(3)=11-5p<05 ③の共通範囲をとって1m1231 2≦p<3 (2)α<β とすると, α <3 <βであるための条件は (a-3)(β-3)<0 すなわち αβ-3(a+β)+9 <0 題意からα =βはあり えない。 1つの ゆえに p+2-3・2p+9 < 0 = $30 SIN よって p> b> 11

解決済み 回答数: 1
数学 高校生

この問題の(1)なんですが、なみ線を引いた 「重解は、x=-a/2より、」をどうやって導き出すかが分かりません!解説してくださると嬉しいです。宜しくお願いいたします🙇

118 第2章 高次方程式 Think 例題 62 3次方程式と実数解 **** αを実数の定数とする. 3次方程式 x+(a-1)x2+(a-3)x-2a+3=0 について、 次の問いに答えよ. (1) 重解をもつように, 定数αの値を定め、そのときの重解を求めよ、 (2)異なる3つの実数解をもつように、定数a の値の範囲を定めよ 考え方 まずは、次数の最も低いαについて整理し 解答 (xの1次式)×(xの2次式) の形に因数分解する. (1)「2次方程式の解が、1次方程式の解を含む」場合と,「2次方程式が重解をもっ 場合の2通りが考えられる. (2)2次方程式が異なる2つの実数解をもち、かつ2次方程式の解が1次方程式の帰 を含まない場合である. (1) f(x)=x3+(a-1)x2+(a-3)x -2a+3 と する. a について整理すると, 次数の低い文字 a 整理 f(x)=x+(a-1)x2+(a-3)x-2a+3 =(x2+x-2)a+x-x-3x+3 数分解する. f(1)=1°+(a-1)12 =(x+2)(x-1)a+x2(x-1) +(a-3)・1−2a+3= 0 -3(x-1) =(x-1){(x+2)a + x2-3} より, f(x) は x-1 を因数に もつ. =(x-1)(x2+ax+2a-3) f(x) =0 とすると, x-1=0 または x2+ax+2a-3=0 したがって,f(x)=0が重解をもつのは, 次の2通りの場合である. (i) x2+ax+2a-3=0 がx=1 を解 にもつ (ii) x2+ax+2a-30 が 重解をもつ (i) のとき, x=1 が解であるから, これを利用して因数分解しても よい。 組立除法 11 a-1 a-3-2a+3 1 a 2a-3 10 1 a 2a-3 (i)のとき, x+ax+2a-3=0 の判別式を 2 12+α・1+2a-3=0 より a=- x=1 が重解 3 残りの解は, 5 x2 (x-1)x+ =0 -= 0 を解いて Dとすると,重解をもつのでD=0である。 +123x-/3/3 CMD=a²-4(2a-3) =a²-8a +12 =(a-2)(a-6) より, したがって (a-2)(a-6)=0 a=2.6 53 重解は,x= より a 2 をもつとき,x=- a=2のとき, x=-1 a=6 のとき, x=-3 の重解を求める. より,x=- ax2+bx+c=0 (α0) が重 b 2a a=2, a=6 のそれぞれの場 残りの解は,どちらもx=1

解決済み 回答数: 1
数学 高校生

x🟰−2y➕1ってどうやったら、でてくるのですか? 最後のすなわちの所です。

重要 例題 45 因数分解ができるための条件2=1626 x2+3xy+2y2-3x-5y+kx,yの1次式の積に因数分解できるとき,定数k の値を求めよ。 また、 その場合に,この式を因数分解せよ。 [東京薬大] 基本44 用 指針 与式が x,yの1次式の積の形に因数分解できるということは, (5)=(ax+by+c)(px+qy+r) (8-8) (1 8)()()() 解答 の形に表されるということである。 恒等式の性質を利用(検討 参照) してもよいが、ここで は、与式を2次式とみたとき, = 0 とおいたxの2次方程式の解がyの1次式で なければならないと考えて, kの値を求めてみよう。 ポイントは,解がyの1次式であれば,解の公式における内がyについての完全平 式 [(整式)2 の形の整式] となることである。 P=x2+3xy+2y2-3x-5y+kとすると P=x2+3(y-1)x+2y2-5y+h +=04+28+(x+4x11-13) 712 P=0を xについての2次方程式と考えると,解の公式から x= 4. - x2の係数が1であるから xについて整理した方がら くである。 —3(y−1)±√9(y—1)²—4(2y2-5y+k), ba+ 2 -3(y-1) ±√y2+2y+9-4k 2 2 Pがxyの1次式の積に因数分解できるためには、この解がy の1次式で表されなければならない。 この2つの解をα βとす あると、 複素数の範囲で考え てP=(x-a)(x-B) と因数分解される。 よって, 根号内の式y'+2y+9-4kは完全平方式でなければな完全平方式 らないから, y2+2y+9-4k=0の判別式をDとすると =0が重解をもつ 判別式D=0 D =12-(9-4k)=4k-8=0 ゆえに k=2 をくに代 -3(y-1)+(y+1)2 -3y+3±(y+1) この x= 2 2 すなわち x=-y+2, -2y+] よって P={x-(-y+2)}{x-(-2y+1)} =(x+y-2)(x+2v-1) どうやった (y+1)=ly+1である が,±がついているから, +1の符号で分ける必要 にはない。 れかでているのか? 私を仕事 ():05

解決済み 回答数: 1
数学 高校生

数Ⅰの2次不等式の問題です。 「a>a^2のとき」を調べる理由を教えてください🙇🏻‍♀️

要 例題 103 文字係数の2次不等式の解 次のxについての不等式を解け。 ただし, は定数とする。 00000 基本 31.87,88 重要 105 x-(a+a)x+a³≤0 CHART & SOLUTION 係数に文字を含む2次不等式 2次方程式の解の大小関係に注意して場合分け 左辺は因数分解できて (x-a)(x-a2)≤0 <β のとき (xa)(x-B)M0axp ここではα,Bがともにの式で表されるから,ととの大小関係で場合が分かれる。 解答 不等式から x2_(a2+α)x+α≦o したがって (x-a)(x-a²)≤0 ● [1] a <α のとき a²-a>05 a(a-1)>0 よって a<0, 1<a このとき、 ①の解は a≤x≤a² 16 [2] a=α のとき a-a=0 から a(a-1)=0 a=0, 1 たすき掛けを利用すると ... ① 1 -a-a -a²-a2 1 a³ -(a²+a) よって α=0 のとき ① は x2≧0となり α=1のとき ①は (x-1)^≦0 となり x=1 大 & 02 (1-10)(1+1) 3章 11 2次不等式 αの値を① に代入。 (x-α)2 0 を満たす解 はx=α のみ。 0≦x≦0 は x = 0, 1≦x≦1 は x=1 を表すから,解は のとき a²≤x≤a a < 0, 1 <αのとき a≤x≤a² と書いてもよい。 (01)(x) a-a< 0 から 0 [3] a>α^ のとき a(a-1)<0 よって 0<a< 1 2 このとき ①の解は a² ≤x≤a 以上から 0<a<1 のとき a²≤x≤a α = 0 のとき x=0 0=x |a=1のとき x=1 a < 0, 1 <a のとき a≤x≤a² 土 515

解決済み 回答数: 1