学年

質問の種類

数学 高校生

24(2)について質問です。 青線部はなぜ-1<a<0、0<a<1/3ではないのですか?

54 第2章 2次関数 55 標問 24 すべての(ある) に対して... 不等式 ax²+(a-1)x+a>0について, (1) すべての実数に対してこの不等式が成り立つような定数αの値の範囲 を求めよ. この6つのグラフを考えると, すべての実数 に対して ax2+bx+c > 0 となるのは, a>0, (D=) b2-4ac<0 のときであることが納得できるでしょう. 次に, ・解法のプロセス ar2+bx+c>0 (a≠0) となる実数ェが存在する。 > または 62-4ac>0 (2)この不等式を満たす実数が存在するような定数αの値の範囲を求めよ. (千葉工業大・ 改) ax2+bx+c>0 となる実数xが存在する 条件はどうでしょうか. 精講 2次不等式 ar²+bx+c>0 (α≠0) について考えることにします。 この2次不等式が すべての実数xに対して成 立する条件を調べてみましょう. 解法のプロセス 前の6つのグラフを見ると, α > 0 ならO.K. です.そして,a <0 でも、 (D=) 624ac0 な らO.K. です.つまり ◆グラフがx軸より上側の部分 に(も)あればよい すべての実数に対して ax2+bx+c>0 (a≠0) a0 または (D=) 62-4ac > 0 が条件となります。 ↓ a>0 かつ 6-4ac < 0 y=ax2+bx+c (a≠0) のグラフを利用して考 えるとわかりやすいです. 解答 すべての実数xに対して ax+bx+c>0 となるのは, y=ax2+bx+c のグラフがx軸より上に浮い ていることです. いいかえると, y=ax2+bx+c a>0 (a-1)2-4a²<0 下に凸で,軸と共有点をもたないこと, つま りα > 0 かつ (D=) 62-4ac < 0 が条件です。 αの符号, Dの符号によって, y=ax2+bx+c のグラフは次のようになります。 a>0 のとき (D=) b2-4ac>0 (D=) 63-4ac=0 (D=) b2-4ac <0 + + + ax2+(a-1)x+a>0 ......(*) (1) α=0 のとき (*)は-x>0 となり, これを満たすェは x < 0 である. 次に, α≠0 のときについて調べる. すべての実数に対して2次不等式 (*) が成り立つ条件は である. (α-1)^-4a²<0 より (a+1) (3α-1)>0 よってa<-1, 1/32 <a a>0であるから 1/18<a (2)(i) a=0 のとき, (*) を満たすxが存在する. (ii) α=0 のとき, (*) を満たす実数ェが存在する条件は a>0 または (α-1)^-4a²>0 である. (a-1)2-4a2>0より 1<a</1/23 -3a²-2α+1 <0 より, 3a²+2a-1>0 の係数が正またはD>0 ◆ェの係数が正かつ D<0 α < 0 のとき (D=) 62-4ac>0 (D=) 62-4ac=0 (D=) b2-4ac<0 よって, -1<a (ただし, a≠0) したがって, (i), (ii)より -1<a ◆α≠0 のときについて調べて いる © + ① 演習問題 24 すべての実数xについて, ar'+(a-1)x+α-1<0 が成り立つような αの値の範囲を求めよ. 第2章

解決済み 回答数: 1
数学 高校生

数学 答えと違うやり方でやった(二枚目)のですが、良いのでしょうか?k=1のときを考えてないからダメだと思いますが。。

要 例題 43 虚数を係数とする 2次方程式 00000] xの方程式(1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 (x-6)=(+x)([+x) (£) ひとすると 基本 38 73 判別式は係数が実数のときに限る DOから求めようとするのは完全な誤り(下の INFORMATION 参照)。(ど)。 実数解をαとすると (1+i)μ2+(k+i)a+3+3ki=0 RBORONE ns-e+x(S-D) (1) 2章 6 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により (1) a=0, 6=0 α, kの連立方程式が得られる。 る。 .... 解答 NEDOZEURS-50-DE) to (S) 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (a2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 a+bi=0 の形に整理。 α kは実数であるから, a2+ka+3, a2+α+3k も実数。この断り書きは重要。 よって ①② から ゆえに よって Q2+ka+3=0 _Q2+α+3k=0 ...... 2 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 複素数の相等。 ← α を消去。 infk を消去すると k=1 または α=30= (L-n) + α-22-9=0 が得られ, [1] k=1のとき ① ② はともに α2+α+3=0 となる。 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 これを満たす実数 αは存在しないから、不適 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 RS ←D=12-4・1・3=-11<0 ①:32+3k+3 = 0 ②:32+3+3k=0 [1] [2] から求めるkの値はk=-46 実数解は x=3 2次方程式の解と判別式 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b c が実数のときに限る。 例えば, α=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix'+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° 0-6040-0 の方程式 (1+i)x²+(k-i)x-(k-1+2)=0 実数解をもつ #th to a litt

未解決 回答数: 0
数学 高校生

この問題がよく分かりません。 何が分からないのかもわかっていないレベルなので 詳しく教えていただけるとありがたいです。 大雑把な質問で申し訳ありませんがお願いします🙇‍♀️

83 数分解できる。 もち 次式×2次式 よ」とい 解すればよい。 の 指針 与式がx、yの1次式の積の形に因数分解できるということは、 (与式)=(ax+by+c)(px+y+z) 例題 47 因数分解ができるための条件 00000 x2+3xy+2y2-3x-5y+kがxyの1次式の積に因数分解できるとき、定数k の値を求めよ。 また、 その場合に、この式を因数分解せよ。 [東京薬大] 基本46 を利用 =0 とおいて解く の公式。 狐の前の2 (0) 解答 を忘れないよう 数の範囲の因数 ら x= -3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 ==3(y-1)±√y2+2y+9-4k の形に表されるということである。 恒等式の性質を利用(検討参照) してもよいが、 こ そこでは,与式を2次式とみたとき, = 0 とおいたxの2次方程式の解の1 次式でなければならないと考えて、その値を求めてみよう。 ポイントは、解がの1次式であれば、解の公式における内がりについての完 平方式(多項式)”の形の多項式] となることである。 P=x2+3xy+2y2-3x-5y+k とすると P=x2+3(y-1)x+2y2-5y+k P=0をxについての2次方程式と考えると、解の公式か x”の係数が1であるか ら,xについて整理した 方がらくである。 2 2章 解と係数の関係、解の存在範囲 e: と この1=12-(9-4k)=4k-8=0 ゆえに k=2 4 里の因数分 _-3(x-1)+√(+1) -3y+3±(y+1) (y+1)^=ly+1|であ = による。 このとき x= 2 すなわち x=-y+2, -2y+1 ないよう よってP={x-(-y+2)}{x-(-2y+1)} =(x+y-2)(x+2y-1) +x(1+28)るが、土がついているか ら,y+1の符号で分け る必要はない。 (p+4)=(0- 恒等式の性質の利用 検討 2 この2つの解をα, β と すると, 複素数の範囲で はP=(x-α)(x-β) と因数分解される。 Pがx,yの1次式の積に因数分解できるためには,この 解がyの1次式で表されなければならない。 よって,根号内の式y2+2y+9-4kは完全平方式でなけれ 完全平方式 ばならないから, y2+2y+9-4k=0 の判別式をDとする ⇔=0が重解をもつ ⇔判別式 D=0 ると, 1 いない (1)x2+xy-6y-x+7y+k x2+3xy+2y2=(x+y)(x+2y) であるから,与式が x, yの1次式の積に因数分解できると すると,(与式)=(x+y+a)(x+2y+b) ① と表される。 ...... ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+abとなるから, 両辺の係数を比較して a+b=-3,2a+b=-5,ab=k これから,kの値が求められる。 い 歌の 8A 10-1-x+(8-x)(ローズ) 練習 次の2次式がx,yの1次式の積に因数分解できるように、定数kの値を定めよ。 ③ 47 また,その場合に,この式を因数分解せよ。 (8-8) (2) 2x2-xy-3y²+5x-5y+k

解決済み 回答数: 1