学年

質問の種類

数学 高校生

至急! sとtの求め方を教えて欲しいです。 2枚目の問題もお願いします。

まずは、後攻の 第4問~第7問は、いずれか3問を選択し、解答しなさい。 第5回 数学ⅡB C 第6問 (選択問題) (配点 16 ) 1辺の長さが V である正方形の紙を折ってできる図形について考えよう。 次の左の図のように紙の四つの頂点を A, B, C, Dとし、2本の対角線の交点) をDとする。正方形の紙を対角線 ACを折り目として折り, 右の図のように折っ た後の頂点BをEとし∠EOD = 0 とおく。 ただし, 0°0 180°とする。 D (2) ∠EAD=60° とする。 ED= ク であるから, 0= ケである。 また 52 CE= CD=サ である。 Op-Oc B このとき OA-OB = ア OA. OD= イ である。 2.+= ○Dto 人 ケの解答群 ORICA 30° ① 45° ② 60° 90° ④ 120° ⑤ 135° ⑥ 150° コ サの解答群(同じものを繰り返し選んでもよい。) Ⓒ OA + OE 0 OA - OE ②ON+OE 3 OA + OD ④OA - OD 6 -OA + OD (1) 0=60°のとき ウ OE. OD= ED = オ 1.1.— ED:1+1-2.1/2 エ 2 正解 であり である。 AE.AD = キ 2 (数学 II. 数学 B 数学C第6問は次ページに続く。) (CE-CA)(CO-CA) (i) 3点 E, C,Dを含む平面をαとし, Aからに引いた垂線との交点を Hとする。Hは上の点であるから, 実数 s, tを用いてCH = SCE+ID の形に表される。 AH.CE=AH.CD= である。 AM: AC+CH AULEF AHACE =(AC+C)CE - LACESCENT CO ○ ス t= タ AH-CE により CH =SCOAtor)++(aAton)) =(stt)OA+Soft (数学 II. 数学 B. 数学 第6問は次ページに続く。) =AN(OMO) =A1011-01+ ale4-01) AH-CE=(AC+CH)-CE GON-ACP ACCE+SCEL+CE-C7 23 AH=(AC+(H) Act (st+jaht so + tap = (stt-1)aA +ac+sastop

解決済み 回答数: 1
数学 高校生

このQのx座標はどうやってだしているんですか? 問題文のケ・コ の部分です!

解説 OC=OB=4, ∠COB = 20より, Cの x 座標は 4cos20=4(cos'0-sin20)=4( 4(1-a²) 1+a2 1+a2 a² 1+a 第1問(数学Ⅱ 図形と方程式, 三角関数) II 1 3 4 5 24 【難易度...★★】 Cのy座標は YA `C (p. a) l:y=ax 4sin208sin Acos0=8・ 8a =1+α2 よって, C の座標は a √1+a² √1+a² O Q 18 A(2, 0) B(4,0) (1Xi) C の座標を (p, g) とおくと, l⊥BCより 9-0 p+ag-4=0 4(1-a²) 8a (⑧⑦) 1+a² 1+a² (2) lは線分BCの垂直二等分線であり, Aは分 の中点であるから,Qは OBCの重心である。 よって, Qのx座標は 4(1-a2)] 1/4+4+te 8 3(1+a a. =-1 P-4 (①) 3 1+a2 また、親分BCの中点(+4, が上にあるので Qのy座標は p+4 1 8a =a 2 2 31+α23(1+α2) 8a ap-g+4a=0 (6) ②よりg=ap+4a, ① に代入して p+a(ap+4a)-4=0 (1+α2)p=4(102) よって, Q の座標は Q(3(1+a²ð), 3(1+a²³)) 8a (3, 0) (3)(2)より 第 (1) (ii) 4(1-a²) p= 1+α² ②より √4(1-a²) +4}= g=a 1+a² 8a 1+α² POB=0 (0<< 2 ) とおくと,tan0 はの傾 きを表すので tan 0=a (0) 8 x= 3(1+a2) 8a y= 3(1+α2) とおくと, >0よりx>0,y>0であり,③④より y n a= x 8 これを③,すなわち x(1+α²)に代入して このとき 1 cos20= 1 1+tan20 1+a² COS0 >0より cos= 3 √1+a2 x 8 8 x2+y2=1203 3x 16 よって, 点Qの軌跡は a sin0=tan0cos= √1+a 中心 ( 143 ) 半径 1/3の円 のy>0の部分である。

解決済み 回答数: 1
数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1
数学 高校生

【三角関数】 (オ)についてです。 答えが③になる理由がわからないです。 問題文からわかるのですか? それとも基本事項ですか?

数学B・数学C (注)この科目には、選択問題があります。(3ページ参照。) での三角比の合成 第1問(必善問題)(配点 15) 紅学・学 数学Ⅱ・数学B 数学 C ウ の解答群 太郎さんは三角関数のある問題の解法の解説を読んで,自分で応用を考えてみる ことにした。 百 3π 2 ①π ② ③ 2π 2 太郎さんは方程式 sin 6. +- =cosxx の解について考えてみることにした。 I の解答群 (1)太郎さんはたとえば="を代入すると水の左辺はア ,右辺は イ sinasin β ① sin a cos β となり一致しないことを確かめた。 また,他に幾つかの値を代入してみたが を満たすxの値はみつからなかった。 sin (bit ④ 2sin asin / ⑤ 2sin a cos B cos asin ẞ ⑥ 2 cosasin β ③ cosacos β ⑦2 cos a cos B 3_ で イ の解答群 6 O 1 /3 ① √2 ② ③ 2 ④ 0 2 (5) ⑥ √2 2 √3 ⑦ ⑧ -1 2 (2)太郎さんは先に読んだ解法にならって次のように考えた。 一般に cos x=sin( ウ -x) (3)太郎さんは別の解法についても考えてみることにした。 太郎さんは一般に inA=sin B のとき, A=オであることに着目し, A=6x+7 B= ウーと考えることでも方程式を解けることに気がついた。 B+zu オの解答群 ⑩ B+nπ (n は整数) ① B+2n (n は整数) ②B+mπ, π-B+nπ (m, n は整数) ③ B+2mπ, π-B+2nπ (m, n は整数) sin ( Sin であるから, 方程式の解は方程式 sin(6æ+/)=sin(ウ-x)…の解 である。 一般に sinxcospt cosin カ (4) 方程式の正の最小の解はx= π,正の小さい方から2番目の解は sin(α+β)-sin(α-β)= H {rindcosp+ cosasige) キク O ケ である。よって, α+3=6x+a-B= ウ 3' -x から α, β を求め, x= πである。 また, 方程式 Xの 0≦x<2である解はシス 個ある。 コサ エ =0に着目することで方程式 すなわち方程式を解くことができる。 (数学Ⅱ・数学B 数学C第1問は次ページに続く。) sin (6x+1)= = 105 x. sx= sin(x) ze 2 cosa sing x-13=6x+3 x- 6 α = 2 cos (2x+27) d-= -x. ( E * + 2 -5- -4- 2d=5x+ x + 6 12 x -x

解決済み 回答数: 1
数学 高校生

ZP-3 ソタチツ ソタチツがわかりません。前に書いてある誘導にしたがうんだろうなということまではわかったのですが、誘導の言いたいこともわからず、xとt がごちゃこぢゃしてた最終的に0<a<=1/2の時を求めると思うのですが何をしたら良いのかわからず悩んでます。 どなたかす... 続きを読む

数学ⅡI, 数学 B 数学 C 数学Ⅱ 数学 B 数学 [2] (1) α, k 実数とし, αは0でないとする。 ○(k)=f(at-1)at [zat-to/2aピード h(k)=. )=(at (at-1) dt [Lat-t] = 2a-2-(take *) である。 <a=1/2 のとき, f(t)\dt=[ ソ であるから f(t) \dt=37 - 2 a+ ツ 2 94-2 とする。それぞれについて右辺の定積分を計算すると =2a-2-ak-k a> 1> 1/12 のとき,f(t)\dt= = テ であるから a g(k)= k - k S² \ ƒ (t) \dt = ト + ナ a- = a サ である。 セ -g(k) したがって, (*)より α = ヌ となり, f(x) は求められる。 である。 h(k) = 32 (2)次の等式を満たす 1次関数 f(x) を求めよう。 f(x)=xff(t)\dt-1 Solf (t) dt は正の定数であるから *f(t) dt = a(a>0) ソ の解答群 g(2) ①/-g(2) ②ん(2) ③ - h(2) テ の解答群 (*) とおくと, f(x) = ax-1 である。 また,f(x) = 0 を満たすxの値はである。 a ff(t) \dt について考える。 (数学II, 数学B, 数学C第3問は次ページに続く。) A 9 g (1)+(1/1) -(1/2)+(1/1) ® 29 (1) ⑧ 1 -9(1) G 92h (1) <-15-

解決済み 回答数: 2