学年

質問の種類

数学 高校生

赤い線で引いた部分の理由がわかりません。 教えてください

1 6 不等式の証明 るようにしたい。 2 (相加平均) (相乗平均) の等号成立条件 a>0,6> 0 のとき a+b ≧√ab 等号は a=b のとき成り立つ。 2 この大小関係を上手に使うと不等式が容易に証明できることがあるが,等号成立条件 に注意しないと,うまくいかないことがある。次の2つの例を見てみよう。 なお,a>0,60 とする 例1 (1+2/2)(1+号)≧4の証明 (相加平均) ≧ (相乗平均) により b 1+ ≧2 a b 基本例題 30 (2)の不等式 ≧9 の証明 [例2](a+1/2)(6+1/2) 2 (相加平均) ≧ (相乗平均) により a ... ≧2. a …② 2 at/2=2√//...③.6+/1/22√ 4b ≥2A (4) a 辺々掛けて(1+1/2)(1+号) ≧4 B) に対し b ④辺々掛けて (a+1/6)(6+1/2)=8 例1の証明はうまくいったのに,例2ではうまくいかない。 この違いはどこにある のだろうか? その理由は, 等号成立条件にある。 例1の①②の等号はともにα=bのときに成り立つから,不等式 A の等号もa=b のときに成り立つ。 よって、証明もうまくいったのである。 一方,例2 で, ③の等号は αb=1のときに成り立つのに対し, ④の等号は ab=4の ときに成り立つが, ab=1とαb = 4 を同時に満たす正の数α, 6 は存在しない。 よって, Bは不等式としては正しいが,等号が成り立つ (=8となる)ことはない。

未解決 回答数: 1
数学 高校生

なぜ赤で囲まれたところでは、.... <(1/3)^n(3-a1)なのに回答では<=になっているのか? ChatGPTに聞いてみたけどよくわかりませんでした。教えて欲しいです

重要 30 漸化式と極限 (5) ・・・はさみうちの原理 00000 数列 (a) が 03.42=1+1+α (n=1, 2, 3, ......) を満たすとき (1) 03を証明せよ。 ((3) 数列{an) の極限値を求めよ。 指針 (2) 3-** <1/12 (3-2)を証明せよ。 [ 神戸大] p.34 基本事項 基本 21 ① すべての自然数nについての成立を示す数学的帰納法の利用。 (2)(1)の結果、すなわち、3-0であることを利用。 (3) 漸化式変形して、一般項αをの式で表すのは難しい。そこで、(2)で示した 不等式を利用し、はさみうちの原理を使って数列 (3-α)の極限を求める。 はさみうちの原理 すべてのnについて Disastのとき limp = limg =α ならば なお,p.54.55の補足事項も参照。 lima-a 53 CHART 求めにくい極限 不等式利用ではさみうち 2章 数列の極限 解答 (1) 0<an<3 ...... ① とする。 [1] n=1のとき,与えられた条件から①は成り立つ。 [2] n=kのとき,①が成り立つと仮定すると 0<ak <3 nk+1のときを考えると, 0<ak<3であるから ak+1 1+1+ak >2>0 ak+1=1+1+ak <1+√1+3=3 したがって 0<ak+1 <3 < よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ①は成り立つ。 (2)3-αn+1=2√1+an = 3-an 2+√1+an </13- <1/3 (3-4) \n-1 lim (3)(12) から, n≧2のとき no 3 1\n-1 したがって 03-am = (1/3) =(1/2) (301) (3-α1) = 0 であるから lim(3-an)=0 N1X liman=3 n→∞ 数学的帰納法による。 <0<a<3 <<αから√1+ax >1 <3から√1+αk <2 3-a>0であり,an>0 から an> n≧2のとき, (2) から 3-and- an< (3-an-1) (1/2)(3)……… \n-1 (1/2)(3) 3 =2, n=2のとき a2= 2/2 am1-1/2 を満たす数列{an)について すべての自然数nに対してan>1であることを証明せよ。 「類 関西

解決済み 回答数: 1
数学 高校生

青チャートです。 このページの練習問題の(1)なんですけど、他の例題や(2)は、結論から変形して条件を使って証明している感じなんですけど、(1)は条件を変形して結論に持っていく解答になってて、これはどういった理由こういうアプローチの仕方の違いなのですか。どこに目をつけたらそ... 続きを読む

解答 (2) a+b+c=ab+bc+ca=3のとき, a, b, cはすべて1であることを証明せ よ。 指針 まず, 結論を式で表すことを考えると、次のようになる。 (1) a,b,c のうち少なくとも1つは1である ⇔ a=1 または 6=1 または c=1 ⇔a-1=0 または 6-1=0 または c-1=0 ⇒ (a-1) (6-1)(c-1)=0 ★ (2) a, b, cはすべて1であるα=1 かつ 6=1 かつc=1 ⇔a-1=0 かつ 6-1=0 かつ c-1=0 (a-1)+(6-1)+(c-1)=0 よって、条件式から,これらの式を導くことを考える。 ②13 (1) (2) 142x CHART 証明の問題 結論から お迎えに行く (1) P=(a-1) (-1) (c-1) とすると P=abc-(ab+bc+ca)+(a+b+c)-1 abc=1とa+b+c=ab+bc+ca を代入すると P=1-(a+b+c)+(a+b+c)-1=0 よって α-1=0 または 6-1=0 または c-1=0 したがって, a, b c のうち少なくとも1つは1である。 (2)Q=(a-1)+(6-1)+(c-1)2 とすると Q=a+b2+c-2(a+b+c) +3 ここで, (a+b+c)=a+b2+c2+2(ab+bc+ca) るから ゆえに よって a+b2+c2=(a+b+c)2-2(ab+bc+ca) =32-2・3=3 Q=3-2・3+3=0 α-1=0 かつ 6-1=0 かつ c-1=0 したがって, a, b, cはすべて1である。 指針 (1) の... の方針 結論から方針を立てる ことは,多くの場面で有 効な考え方である。 |ABC = 0 ⇔A=0 または B=0 またはC= 0 <指針(2)の__★の方針 実数 A に対し A'≧0 [等号はA=0のとき成 り立つ。] これを利用した手法であ る。 A'+B'+C2=0 ⇔A=B=C=0 15 a $16 ◎17 練習 a b c d は実数とする。 ④ 26 1 + + a 1 1 b のとき,a,b,cのうちどれか2つの和は 0 である 1 a+b+c C ことを証明せよ。 (2) a2+b2+c+d=a+b+c+d=4のとき, a=b=c=d=1であることを証明せ よ。 p.49 EX17

解決済み 回答数: 1