学年

質問の種類

公民 中学生

プリントから 国際協調を実するために、 どのような組織があるのか 教えてください。

課題① 国際連合についてまとめよう。 国際連合 1945年4月に、(①国際連合憲章)を採択し、10月に51か国を原加盟国とする国際 連合を設立した。本部は、(② ニューヨーク 加盟している。 国連の目的 1. 世界の(③ 平和と安全 )の維持 )におかれ、現在は、およそ190の国が 2.国家間の(④友好関係)の発展 3.まずしい人々の(⑤生活条件の向上 )とすべての人の (⑥人権の保障) 4.これらの目的を果たすための(⑦ 国際協力)を促進 《 国際連合の主要機関 》 機関 総会 安全保障理事会 活動 ●国が1票をもち、 (⑧軍縮開発と環境、人権、平和維持)など の広い問題が審議される。 ●2015年には、(⑨ 持続可能な開発目標(SDGs) その実現にも力を入れている。 ●世界の(③ 平和と安全 )の維持に責任を負う。 国際紛争を調査し、 解決方法を勧告する。 )を採択し、 ●国際的な安全をおびやかすような国に対して、 (⑩経済制裁や軍事行動 などの強制措置をとるように、加盟国に求めることができる。 ●(4平和維持活動 (Pko) の派遣を決定する。 (12 アメリカ・イギリス・フランス・ロシア・中国 の5つ の国が常任理事国で、 ( 13 拒否 権)をもっている。 国際司法 裁判所 加盟国から依頼された、 条約の解釈や国際法上の問題に関する紛争について の裁判を行う。

回答募集中 回答数: 0
数学 中学生

この36通りの意味がわからないです!教えて欲しいです!

○枚 この袋の中から玉を1個取り出すとき、青玉の出る確率 6個のうち2個 この袋の中から玉を1個取り出すとき、青玉の出る確率 出る確率は である。 4/9 出る確率は である。 さいころを続けて2回投げるとき、次の問いに答え なさい。(25点 各5点、知) 3 さいころを続けて2回投げるとき、次の問いに答え なさい。 (25点 各5点、 知) (1)起こりうるすべての場合は何通りあるか求めよ。 (1) 起こりうるすべての場合は何通りあるか求めよ。 36通り (2)出る目の数の和が8になる確率を 5 求めよ。 (2.6) (3.5)(44)(5.3)(62) の5通り 36 (2) 出る目の数の和が8になる確率を 求めよ。 (3)出る目の数の積が6以上になる確 率を求めよ。 (1.6)(2.3)(2.4)(2.5)(2.6) (52)-(5.6) 13 (3) 出る目の数の積が6以上になる確 率を求めよ。 (3.2)~(3.6) (4.2)~(46) (6.1)~(66) の26通り 18 26 (4)2回とも偶数の目が出る確率を求 36 めよ。(2,2) (2,4) (26) (4.2)(4.4)(4.6) (62)(6.4)(6.6)の9通り 4 36 (5) 1回目の出た目の数の方が2回目 に出た目の数より大きくなる確率を 5 求めよ。同数の場合…6通り 12 36-6 15- 2. =15(通り)なので36 (4) 2回とも偶数の目が出る確率を求 めよ。 (5) 1回目の出た目の数の方が2回目 に出た目の数より大きくなる確率を 求めよ。

解決済み 回答数: 1
地理 中学生

(2)bの問題で資料3から読み取って 福井駅から軽井沢駅まで新幹線で向かう際に 通過する県の順番に並び替える問題なんですけど、 ア山梨 イ富山 ウ石川 エ新潟 オ長野 と読み取ったんですけど、 回答はア石川 イ福井 ウ富山 エ新潟 オ長野 でした。各県の見... 続きを読む

(2) 2班は 「地方公共団体間の様々な結びつき」 に着目したところ、 福井県と軽井沢 資料2 北陸新幹線の路線図(一部 に連携する協定を結んだことを知り、 関連す 資料2.3を作成した。 面積 km 人口 密度 生産 (億円) 資料3 工業生産額(億円) (2019年) (人/km) [2021年] (2000) E [2001年 米 機械 せんい a 資料2の福井駅と軽井沢駅を結ぶ線に も近いDの山脈として、最も適当なものを 次のア~エから一つ選んで、その記号を書け。 ア 飛騨山脈 D ア 4,186 271 281 18,291 2,475 1,929 桜井 イ ウ 4.191 185 4,248 247 281 8,900 434 11,643 9,897 2,786 2.306 560 エ 12,584 176 1.503 17.570 8,663 733 イ 日高山脈 エ 奥羽山脈 ウ 赤石山脈 (農林水産省資料済産業省資料ほかより作成) 資料3は新幹線が通過する中部地方の県についてまとめたものである。 北陸新幹線が福井県まで開業した後、 福井駅から軽井 沢駅へ新幹線で向かう際に通過する県の順に、 資料3のアーオの県を並べ替えて記号で書け。 ※金沢-敦賀間は2024年3月開予定 x 路線図中の○は主な停車駅 13,562 153 413 40,896. 5.213 176 長

解決済み 回答数: 1
数学 高校生

数学の問題です (3)についてです -1<x<1のとき、なぜθの値が2つ存在するといえるのでしょうか どなたか解説よろしくお願いします

大学) B上に No 5 があるから 10 [2024 西南学院大] 002 のとき, αを定数として, 関数 f(0) =4sin204cos0 +1 -a を考える。 (1) cos0=xとおくとき, f (0) をxの式で表せ。 (2) a=0 のとき, f(0) の最大値, および最小値と,それらの値をとるときの0の値を 求めよ。 いる。 方程式 f(0)=0が異なる4つの解をもつとき, aのとりうる値の範囲を求めよ。 求 家の足をHと (1) f(8)=4sin-4cos0+1-a=4(1-cos20)-4cos0 +1-a =-4cos20-4cos0+5-a=-4x2-4x+5-a (2)002のとき -1≤x≤1 ① また,g(x)=-4x2-4x+5-α とすると, a=0のとき g(x)=-4x2-4x +5 =-4(x+1)²+6 ①の範囲において, 関数 g(x) は x=-- -- で最大値6,x=1で最小値 -3 2 をとる。 002 であるから, x=-- -12 となるのは、 2 4 cos=-- ・から x=1 となるのは, cos0=1から 0=0 2,-s)」 よって, 関数 f(0) は 4 ・π, 0=1/2x, 1/3本で最大値6 1-2 ©DISNEYIPOKAF 1 10 2 -3 x x (2) 0=0で最小値-3 をとる。 (3) -1 <x<1であるxに対して, 対応する0の値は2つ存在するから, 方程式 g(x)=0が1<x<1の範囲に異なる2つの実数解をもつようなαの値の範囲を求め ればよい。 方程式 g(x) = 0 を変形すると -4x2-4x+5=a よって、 求めるαの値の範囲は, 曲線 y= -4x2-4x+5 と直線y=αが−1<x<1 の範囲で異なる2点で交わるようなαの値の範囲に一致する。 したがって, (2) から 5<a<6

解決済み 回答数: 1