学年

質問の種類

数学 高校生

(2) F’’(x)>0だと、なぜF’(x)は単調に増加すると分かるんですか?その他のも同様になぜ単調に増加すると分かるのかが分かりません。解説をお願いします🙇‍♂️

基本 例題19 不幸式の証明 ・微分利用(基本) x>0のとき、次の不等式が成り立つことを証明せよ。 2 (1)log(1+x)<1+x 不等式f(x)>g(x)の証明は 0000 (2)類愛知教育大] 327 (2)x2+2e-2x+1 p.326 基本事項 重要 195, 197, 演習 202 大小比較は差を作るに従い,F(x)=f(x)-g(x) 答 として(.........), F(x)の増減を調べ、次の①,②どちらかの方法で F(x)>0を示す。 ① F(x)の最小値を求め, 最小値>0 となることを示す。 これが基本。 ② F(x)が単調増加 [F'(x)>0]でF(a)≧0xαのとき F(x)>0 とする。 (1) では ①, (2) では②の方法による。 なお, F'(x)の符号がわかりにくいときは,更に F" (x) を利用する。 1(1) F(x)=- 1+x 2 1 -log (1+x) とすると x-1 F(x)= | | -1 + x = 2(1+x) 1+x x0におけるF(x)の増減 表は右のようになる。 e> 2 であるから x F'(x) =0 とするとx=1 F'(x) F(x) logelog20 すなわち 1-log2>0 |1|2 F(x)≧F(1)>0 ゆえに,x>0のとき よって,x>0のとき log(1+x) < 1+x 2 大小比較はAHO 差を作る ー (1) 1+x y= log(1+x) とy=-2 1 + 極小 のグラフの位置関係は、下の 図のようになっている 1-log2 YA 1+x y= 2 は 12 10 1 y=log(1+x) ( 6章 27 方程式・不等式への応用 |_ (2) F(x)=x2+2e-e-2x+1) とすると F'(x)=2x-2e-x+2e-2x F"(x)=2+2ex-4e-2x=2(1-e-x)(1+2e-x) このままでは,F'(x)>0 が示しにくい。 よって, F" (x) を利用する。 別解(2) JJF(x)=x²-(1-e¯x)² =(x+1-e-x)(x-1+e_x) x>0のとき,x+(1-e-x)>0 であるから, x>0で F" (x)>0 F'(x)>0 x>0のとき,0<e-x <1であるから ゆえに,F(x)はx=0で単調に増加する。 このことと,F'(0)=0から,x>0 のとき よって, F(x) は x≧0 で単調に増加する。 このことと,F(0)=0 から, x>0のとき x2+2exex+1 したがって,x>0のとき F(x)>0 x1+ex>0を示す。 [方法は (1) の解答と同様。] 200 色)の利用 [6]

解決済み 回答数: 1
数学 高校生

(2)の解説でで(-1)^2-2a(-1)+2はなんで0にならないんですか??

(2) (1)より (x+1)(x²-2ax+2)=0 ......① x=-1, x2-2ax+2=0... ② 51 ①が異なる3つの実数解をもつので、 ②がx=-1 「以外の異なる2つの実数解をもてばよい. (-1)2-2a(-1)+2=0 よって, a²-2>0 Ja=-3 a+ 異なる2点で交わるから> ②がx=-1 を解に もつと異なる3つの 解にならない la<-√2/√2<a したがって, 求めるαの値の範囲は a<-, - <a<-√2, √2<a 2' 注 (1) (解I) と (解ⅡI) の違いは, (解I)ではf(x)のxに何を代入 するかを自分で見つけてこないといけないのに, (解ⅡI)ではその必要 基礎問 には、入 問題を言 「基礎 ためてあ 題され 基礎問 教科 特に でき 精講 カテ は すく 30 高次方程式 (1)3次式(2a-1)x2-2(a-1)x+2 を因数分解せよ. (2) に関する方程式 x³-(2a-1)x²-2(a-1)x+2=0 が異なる3つの実数解をもつようなαの値の範囲を求めよ、 (1)3次式の因数分解といえば, 因数定理 (27 もちろん,これで解答が作れます (解I) が, 数学Ⅰで 文字が2種類以上ある式を因数分解するときは,次数の一番 い文字について整理する ということを学んでいます. (I A4 復習も兼ねて、こちらでも解答を作ってみます(解ⅡI). II) 第2章 がありません. 代入するπは,土 定数項の約数 最高次の係数の約数 しかないこと が知られています. だから 代入するxの値の候補は±1, ±2の4つ (1)より (1次式) (2次式)=0 の形にできました. しかないのです. (1次式) = 0 から解が決まるので, (2次式) =0 が異なる2つの実数 注 は因数分解できないので, (判別式) 0 を使います. 2-2ax+2=0 もてばよいように思えますが,これだけでは不十分です. 解答 ポイント (1) (解Ⅰ) 高次方程式は, 2次以下の整式の積に因数分解して考 える f(x)=x-(2a-1)-2(a-1)x+2 とおく. f(-1)=-1-(2a-1)+2(a-1)+2 「f(x)=」 とおくの =-1-2a+1+2a-2+2=0 は,因数定理を使う 準備 注 因数分解できなくても、このあと学ぶ微分法を使うと解決します。 (95) =(x+1)+2(x+1)-2.x(x+1)a _=(x+1){(x+2)-2ax} =(x+1)(n-2ax+2) =(z+x+2.c+2)-2(x2+ma (解Ⅱ) f(x)=(x+1)(x²-2x+2) x³-(2a-1)x2-2(a-1)x+2 よって, f(x)は+1 を因数にもち, xに数字を代入した 演習問題 30 複素数 1+iを1つの解とする実数係数の3次方程式 ときに, αが消える x+ax2+bx+c=0 ......① ことから,f(-1)=0 を想像する について、 次の問いに答えよ. (1) b, c をαで表せ . (2) ①の実数解をαで表せ. (3) 方程式①と方程式-bx+3=0 ・・・・・・ ② がただ1つの実数解 を共有するとき, a, b c の値を求めよ.

解決済み 回答数: 1