学年

教科

質問の種類

数学 大学生・専門学校生・社会人

積分の解き方が分かりません 教えて欲しいです🙇‍♀️

【7】2次関数 ける接線を + 16に2点A(3,10), B(5.-14)をとり y=-2x²+4x に 直線ABを1とする。 とんとなで囲まれ Bにおける接線を12, た部分の面積を 求めなさい。 Cとで囲まれた部分の面積をSとしたとき, S1 S2 を とし, 【8】 点A(1,-7)を通り2次の係数が-1である2次関数で, 2次関数 Cy=xに接す るものは2つある。 接点のx座標が小さい順に C1, C とする。 このとき、次の間 いに答えなさい。 (1) CとCの接点の座標, CとCの接点の座標をそれぞれ求めなさい。 (2) C, C., C2で囲まれた部分の面積を求めなさい。 【9】2つの2次関数 C1:y=x2-7x+10,C2: y=x^2+x+2の共通接線をと するとき,次の問いに答えなさい。 (1)の方程式を求めなさい。 (2) C1, Cz, 1 で囲まれた部分の面積を求めなさい。 【10】2つの2次関数 C1: y=x2-7x+10,Cz:y=x²+x+2の両方に接する 2次の係数が−1である2次関数をCとするとき、 次の問いに答えなさい。 (1) CとCの接点の座標, CとC2の接点の座標をそれぞれ求めなさい。 (2) C1, C,C で囲まれた部分の面積を求めなさい。 【11】 3次関数 Cy = 2x6x2 +5x+7上の点A(2,9) における接線を1とすると き,Cとで囲まれた部分の面積を求めなさい。 【12】 xy平面上の曲線 C: y=x11x²+21x-10 と直線l: y=-10x+11 で囲 まれた部分の面積を求めなさい。 【13】 xy平面上の曲線 C: y=x(x-1) と直線l: y=kx (0<k<1) で囲まれた 2つの部分の面積が等しくなるようなk の値を求めなさい。

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

英語の問題です。 教えて欲しいです🙇‍♀️

(2) I had my teeth 1 check 1( )に入る最も適切な語句を ① ~ ④から選びなさい。 (1) He went on speaking as if she ( 1 can't 2 hasn't ) there. Son 3 wouldn't ) by a dentist this morning. ult niles 3 checking wahiwon (青山学院大 ) ④weren't pomibinand (岩手医科大) 24 to check 2 checked (3) You should not keep any pets ( 1 after 2 unless ) you can take good care of them. 3 when (中央大) ④which 1 as 2 in ) all be correct. ②anytime (6) If the weather ( ①must have been (4) This town will change ( ) another ten years. (5) Those may not ( 1 absolute ) fine yesterday, I would have done the laundry. 2 is (7) Studying takes up a lot of my time during the week, ( ) little time for hobbies. (芝浦工業大) since 3 of (國學院大) 3 everything ④necessarily (関西学院大 ) ③ wasn't 4 had been (皇學館大) ①1 has left (8) Have you heard the rumors ( 1 that 2 what leaves leaving 4 left ) Susan has returned to this town? ③ which (麗澤大) ④ who 1 by (9) What was found in this experiment is ( 2 for (10)( ) what to say, she remained silent. ) great importance to researchers. 3 in (立命館大) 4 of (愛知工業大) 1 Not knowing 2 Being not knowing ③No knowing ④Knowing no (11) I tried to ( 1 have 2 make ) her to tell me what happened last night. 3 get (十文字学園女子大) 4 let How gimon and (12) Do what you like, as ( 1 far 2 much B in 1 in 2 with bnat am ) as you leave me alone. 3 long (13) This tool is dangerous. Please read the instructions ( (14) If I hadn't drunk so much last night, I ( 1 feel (15) I wish you 1 attend (16) If I ( 1 were ) 2 will feel ) the party yesterday. 2 were attending ) much better than I do right now. ③ would feel ③ have attended (中京大) 4 would have felt (目白大) ④had attended ) in your situation, I would be more careful about what you post on social media. (フェリス女学院大) 4 many ) care. (聖隷クリストファー大) at ④take gwol 3 will be (南山大) ④would be

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題、判別式だけでできないのはなんでですか??

Think 例題 35 無理関数のグラフと直線 **** 関数 y=√2x-1 ……………① のグラフと直線 y=x+k •••••• ② との共有 点の個数を調べよ. ただし, kは実数の定数とする. 考え方 まず,無理関数 y=√2x-1 のグラフをかく. 次に,k の変化に応じて, 直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば, 共有点の個数の変化がつかみやすくなる. ① 曲線 ①と直線 ②が接するときのkの値 y=√2x-1 ...固定 y=x+k 変動 第2章 34 ②] 直線 ②が曲線 ①の端点 (20) を通るときのん の値 つまり、 ①を境として共有点の個数が 0個 1個 2個 ②を境として共有点の個数が 2個→1個 y=v2x-1 とそれぞれ変化する. 解答 ①のグラフは右の図のように なる. y4 まず①②のグラフが接す るときのんの値を求める. ①②より, √2x-1=x+k 両辺を2乗すると, Ø 1 1 x 2x-1=(x+k)? より, ①のグラフと数本の適 当な ② のグラフをかく. y=/20 1/2(x-1)より。 ①のグラフは y=√2x のグラフを 2 x2+2(k-1)x+k+1= 0 x 軸方向に だけ平行 移動したもの この方程式の判別式をDとすると, 重解をもつから, D 1=(k-1)-(k+1)=-2k=0より, k=0 4 次に,直線 ②が点 (20) を通るときのkの値を求める。 10/12th より k=-1/12/ 0= |接する重解をもつ ⇔D=0 ②にx=12, y=0を 代入する. 以上より, ① ② のグラフの共有点の個数は, k>0 のとき, グラフで確認する. 0個 kの値の減少により, <-12, k=0 のとき, 1個 ②は下方に平行移動す る. 1/2sk<0 のとき 2個 Focus 共有点の個数はグラフが接する場合をまず考える 練習 35 関数 y= 2x+3 +3 のグラフと直線 y=ax +2 との共有点の個数を調べよ. ** ただし, αは実数の定数とする. p.994

未解決 回答数: 0
1/330