学年

教科

質問の種類

化学 大学生・専門学校生・社会人

この表を使って グラフ2つ書かなきゃいけないんですが 縦軸に1つ目がプロピオン酸メチルの濃度の対数 2つ目が濃度の逆数 と指定されていて 濃度の対数の求め方と逆数の求め方が分かりません。 どうやって数値を出したらいいんでしょうかお願いします🙇‍♀️

2. 異なる2つの条件で、次のプロピオン酸メチル C2H5COOCH の加水分解反応を行い、 生成物であるプロ ピオン酸 C2H5COOH の濃度を測定したところ、 表1の結果が得られた。 C2H5COOCH3 + H2O C2H5COOH + CH3OH 表 1 プロピオン酸メチルの加水分解反応で生成したプロピオン酸の濃度 / mmol/L Time / min 0 5 10 15 20 30 40 50 75 Exp. 1 0 [19.7 31.6 38.8 43.2 47.5 49.1 49.7 150 Exp. 2 39.5 44.1 45.9 46.9 47.9 48.4 48.7 49.1 2-1. 反応式から予想される反応速度は、どのような式で書き表されるか反応速度定数 k と各成分の濃度を用い て示せ。また、反応次数はいくらか?(何次反応か?) u= ひ= R[C2H5COOH][H2O] 2次反応 2-2. Exp.1 と Exp. 2 で、 原料であるプロピオン酸メチル C2H5COOCH3 の初期濃度は、ともに 50mmol/Lで あった。各時間におけるプロピオン酸メチルの濃度は、いくらになるか。 表2 反応で残っているプロピオン酸メチルの濃度/mmol/L Time / mini 0 5 10 15 20 30 40 40 Exp. 1 50 Exp. 2 50 18.4 30:31 591 411 6.8 2.5 3.1 2. 50 75

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1
1/4