学年

教科

質問の種類

数学 大学生・専門学校生・社会人

高校数学のことで質問です🙋 赤線で囲んだ中で垂直な直線を求めていると思いますが、その過程でどのような考え方を用いて導かれたのかが分かりません。 よろしくお願いします🙇

標を媒介変数 また,点Pは第1象限の点であるから,媒介変数の値の範囲に注意して 積Sのとりうる値の範囲を考える。 の式に代入す 解答 条件から,P(acoso, bsine) (0<< )と表される。 π 点Pにおける接線の方程式は acos o bsin x+ a² -y=1 62 すなわち (bcosθ)x+(asin0)y=ab ①1) と表される。(*) これが点Pを通るとき ①に垂直な直線は, (asin0)x- (bcos0)y=c (cは定数) casino・acoso-bcose・bsino =(a2-b2)sinOcos O よって, 点P における法線の方程式は 5/ bsine 0 R (*) 2直線が FAOqx-py+r= 直である。 なお,点(x 直線 px+g_ 直線の方 9-I + (asino)x-(bcose)y=(a-b2)sin Acose ②において,y=0, x=0 とそれぞれおくことにより (Sa²-b² 2-62 x= より ゆえに ゆえに a2-62 -cos 0, y=- -sinė a b Q(a-be cose, 0), R(0, db sino) Q(22-62 a ここで, 0<b<a, sin>0, cos0 >0より, b -sin0 < 0 であるから ...... ② [9(x-x1) このことを いてもよい。 ◄62<a² a²-b² a²-6² cos 0>0, - a b S= =1/2OQOR= (A2-62)2 1 a²-b2 a²- cos 0.. sino 2 a b OR-b (a2-62)2 Gaian-00-A8-A0=80= = -sino coso= -sin20 sin Acoso 2ab 4ab 0<<1より、0<20<πであるから π 0<sin 20≦1 20=す ときSは最 2 (a²-b²)² したがって 0<S≤ 4ab 練習 実数x, y が 2x2+3y=1 を満たすとき, x2 -y'+xyの最大値と最-

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
1/5