学年

教科

質問の種類

数学 大学生・専門学校生・社会人

テキストには写真の(2.13)と(2.15)より(2.15)式の右辺、左辺の定数項について求められるとしていますが、求め方が分かりません。どのように考えた場合定数項について求められるかを教えてください

}) (0) で .11) xx-th-1² tr 1 n-1 (2.12) Page bi age 171 EN (T 20 君のこと Page +1)= 172 l を上昇階乗ベキと呼ぶ。 この両者をあわせて, 階乗ベキと呼ぶことにする。 2.3 スターリング数 2.2節で学習したように、 階乗ベキは差分演算のなかで有効な計算手段 である。 ここでは,スターリング (Stirling *3) 数を利用して下降階乗ベ キュ”と単項式”の関係を学習する。 ここでnは2以上の自然数とし ておく。 実際には、下降階乗ベキを多項式で表すこと, 単項式を下降階 乗ベキの一次結合で表すことを問題意識とする。 まず、前者については x² = x² +Nn-1,nxn-1 +...+₁,nx = Σnj,n x² in (2.13) j=0 と表せる。ここで,Vn,n=1,70,n=0, さらにnjin=0,j>nであり, 7j,n は漸化式 In=zn+in-1,n n - njn+1=nj-1,n nnjin, 1≤j≤n x² (x-1) {[ (x-1) (x-2) * \\ { XL-{h+1) +2) (x −(n+1)+1) (2.14) を満たす。実際,zn+1=cℓ.(x-n) であるから、この式の両辺をライ プニッツの公式 *4 を利用して回微分すると, 積の微妙で、()は2階 (xn+¹)(i) = (x²)(i). (x − n) + j(x²)(i-1)³025 (2.15) を得る。2.13) から (215) の左辺の定数項は, j! 7jn+1 であり, (2.15) の右辺の定数項は-nj! nijn+j.(j-1)! nj-1 である。 したがって、 う! で割って比較することで, (2.14) が導かれる。 また,後者については, 第2章 差分法 | 37 n xn-¹ +...+ñ₁, x² = Σnk,n x² k=0 x. ?jn+の区間の生き残り処理する? (2.16) と表せる。 ここで, in,n=1,70,n=0, さらに ik,n=0,knであ り kn は漸化式 *3 James Stirling, 1692-1770, スコットランド, スターリングによって書かれた ものに [163] などがある。 *4 1.4.2の定理 1.4を参照のこと。 > (x^²+1) = x^² + Mn₁n₁₁ X²

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数学のチャート式の問題です! 自分はこの2つの方程式がどっちも=0だったので2つの式の左辺同士をイコールで結び、共通解をαと置いて計算しました。それが、2枚目の写真のものです。ですが、それだと解答が間違っているようです。 なぜ自分の解答ではダメなのか、なぜチャート式の解... 続きを読む

重要 例題 方程式の共通解 2つの2次方程式 2x2+kx+4=0, x2+x+k = 0 がただ1つの共通の実数 解をもつように, 定数kの値を定め、その共通解を求めよ。 CHART S OLUTION 方程式の解 共通解をメとおくる x=α が解⇔ x=α を代入して方程式が成り立つ もんだいは 2つの方程式の共通解を x=α とすると,それぞれの式にx=α を代入した 2a²+ka+4=0,a2+α+k=0 が成り立つ。これをα, kについての連立方程式 とみて解く。実数解という条件に注意。 解答 共通解を x =α とすると 2a²+ka+4=0 •••••• ・①, a²+a+k=0 ①②×2 から (k-2)α+4-2k=0 すなわち (k-2)a-2(k-2)=0 よって ゆえに [1] k=2 のとき 2つの方程式は, ともに x2+x+2=0 となる。 その判別式をDとすると (k-2)(a-2)=0 k=2 または α=2 D=12-4・1・2=-7 D<0であり,実数解をもたないから, k = 2 は適さない。 [2] α=2 のとき ②から 22+2+k=0 このとき2つの方程式は 2x2-6x+4=0 ゆえに k=-6 ...... (2) 基本 75 ...... ・①', x2+x-6=0 となり,①'の解はx=1, 2 ②' の解はx=2, -3 よって,確かにただ1つの共通解 x=2をもつ。 [1],[2] から k=-6, 共通解はx=2 x=α を代入した ① と ②の連立方程式を解く。 α² の項を消す。 共通の実数解が存在する ための必要条件であるか ら,逆を調べ十分条件で あることを確かめる。 ←ax²+bx+c=0 の判別 式は D=62-4ac 2(x-1)(x-2)=0, (x-2)(x+3)=0 (INFORMATION この例題の場合,連立方程式 ① ② を解くために,次数を下げる方針で α2 の項を消 去したが,この方針がいつも最も有効とは限らない。 下の PRACTICE 79 の場合は,定数項を消去する方針の方が有効である。 PRACTICE... 79 ④ の方程式ター(k-3)x+5k=0,x+(k-2)x-5k=0がただ1つの共通解をもつ ように定数kの値を定め、その共通解を求めよ。 2020vi S

解決済み 回答数: 1
1/3