学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数Iの2次方程式についての質問です。 マーカーで引いてある数字はどこから出てきたのでしょうか? 分かる方いたら教えて欲しいです🙇‍♀️!

右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺AB, AC 上に AD AE となるように2点D,Eをとり,D,Eから辺BCに 垂線を引き、その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 F CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた の2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 答 FG=x とすると, 0<FG<BC であるから A 0<x<20 ① D また, DF=BF=CG であるから 2DF=BC-FG B 20-x よって DF= 2 長方形 DFGE の面積は DF・FG=20-x.x 2 20-x ゆ x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)±√(-10)2-1.40 =10±2√15 ここで, 02/15 <8 から 10-8<10-2/15 <20, 2<10+2/15<10+8 よって、この解はいずれも ①を満たす。 したがって FG=10±2√15 (cm) E 定義域 ←∠B=∠C=45° であるか 5, ABDF, ACEG G C 角二等辺三角形。 xの係数が偶数 → 26′型 3章 9 2次方程式 解の吟味。 0<2√15=√60<√64= =8 単位をつけ忘れないよう に。

未解決 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だとわかるのでしょうか…?教えて頂きたいです🙇🏻‍♀️🙇🏻‍♀️

15 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。このタイプの問題は、距離(長さ)の条件から図形を考 えるものが多く、三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 T_PLAY1 方角と距離の条件から図を描く問題 XX 2X 3X 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 Cの家はBの家の真東にある。 ウ Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 .Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は√74kmである。 4.Dの家から駅までの距離は4√2kmである。 5.Fの家から駅までの距離は10kmである。 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア,ウエに着目すると、アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。 位置関係 ②

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だと判断できるのかが分かりません。これはどこからそう考えてるのでしょうか…?どなたか教えて頂けますでしょうか🙇🏻‍♀️🙇🏻‍♀️

が確 かり、 ます。 13 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。 このタイプの問題は、距離 (長さ) の条件から図形を考 えるものが多く、 三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 PLAY1 方角と距離の条件から図を描く問題 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 ア.Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 イ.Cの家はBの家の真東にある。 ウ.Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 エ.Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は74kmである。 4.Dの家から駅までの距離は4√2km である。 5.Fの家から駅までの距離は10kmである。 F 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア, ウ, エに着目すると、 アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。

回答募集中 回答数: 0
1/5