学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この物理の問題を教えてください

問題3 (光の干渉) T 図2のように、 絶対屈折率がn=1の2枚の平面ガラス (媒質1) の間に厚さdの薄い板を挟み、 その間にできるくさび形の層に絶対屈折率n2=1の媒質2を入れる。このとき図の点Oから距離 だけ離れた点Dの上方にある点Aから光 (単色光) を当てて上から覗き見ると、 図のOQ 間に 「光 が強め合った明線」 と 「光が弱めあった暗線」 の縞模様が現れる。 以下では簡単のために点Aから 出る光は直進するものとし、A→C→Aという経路の反射光1とA→D→Aという経路の反射光2に よる干渉だけを考える。 図のQの長さをL=100dとし、 真空中の光の波長を入 として、以下の 空欄を埋めよ。 また選択肢がある場合には選択肢の番号を書け。 (i) 媒質1における光の波長は、媒質2における光の波長の (13)倍である。 (ii) 反射光1と反射光2の光学距離の差 (14) 倍であり、 また点Aから入射した光が反射 の するときに位相がずれるのは {(15) 1.点C, 2.点D} である。 (iii) 図のOQ間に見える隣り合う明線の間隔は入。 の (16) 倍である。また=375入) の位置に できるのは {(17) 1. 明線 2. 暗線, 3. 明線でも暗線でもない線} である。 A 媒質1 X 媒質2 L Bi 光 D P 媒質 1 Figure 2: くさび形の層による光の干渉。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学オリンピック対策に取り組んだ問題なのですが、ここのいっている意味がよくわかりません。わかる方お願いします🤲

解答 ロッカーの番号を -1 ずらして0番から1023 番のロッカーが並んでいると考える. 最初の往路で は、 二進法で表して末尾が0の番号のロッカーが開 かれ、帰路では末尾から2桁目が1のロッカーが開 かれる. 次の往路では、末尾から3桁目が0の帰路 では末尾から4桁目が1の番号のロッカーが開かれ 交互にあけていく →2進数の発想 解答 一般に,n=1,2,3,... に対する連立方程式 [ x² + x² + · · · + x ² = y³ [x³ + x² +\ ·+x²³² = ₂² 50.2 整数と実数 が、 無限個の整数解をもつことを示す. a1,a2,..., an を任意の相異なる自然数として, s = a² + a² + + a², t = a³ + a² + … + a²³²2 <. ここで mi = smtkai とおくと ← ??? 【基礎0.2.8】 (1985USAMO問1) 連立方程式 : x² + x ²/² + + 1² = 8²m+1₁2k (x³ + x²³² + ... · + 1²₁/12: = 83m43k+1 となる. そこで, s2m+142k = 13,83mt3k+1 = 22 (y, 2 はある正の整数) を満たすように自然数m,n を定め ればよい. そのためには, 2m+1= 2k = 0 (mod 3) と3m=3k+1 = 0 (mod 2) を満たしていればよい のだから, m=4 (mod 6) かつk = 3 (mod 6) であ ればよい. このように Ti, y, z を定めれば、問題の連 立方程式を満たす. (1²+1²+₁+2985 = y³ x³ + x² + +1985=22 を満たす正の整数 y, 及び相異なる正の整数 π1) 21..., 1985 は存在するかどうか判定せよ. 呼ばれる。 分母と分子が整数である分数として表せる数を有 「理数という. 有理数(分数) を小数で表すと, 有限小 数または巡回小数になる。 逆に有限小数や巡回小数 で表せる数は分数で表せる. 巡回小数でない無限小数で表される数を無理数と いう. 有理数と無理数をあわせて実数という. 【基礎 0.2.9】 (1989AIME 問3 ) n は正の整数, dは十進法で1桁の数で TL = 0.d25d25d25... 1810 となるという. このようなn を求めよ. 13 解答 与えられた方程式より 999n 810 を得る.この両辺を 810倍し,両辺を27で割ると, =100d +25

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答見て、どうしてこの答えになるのかは理解できましたが、どうして私の回答が間違いですか?

めよ。 基本 122 れる。 Ax ev 女を をg, とし =1 =71- ) ば 124 1次不定方程式の自然数解 基本例題 xが2桁で最小である組は (x,y)=(1, 等式2x+3y=33 を満たす自然数x,yの組は CHART O SOLUTION 方程式の自然数解 ...... 不等式で範囲を絞り込む 「x,yが自然数」すなわち x≧1,y≧1 (あるいは x>0,y>0) という条件を利 用して、最初からx,yの値の範囲を絞り込むとよい。 別] 基本例題122と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ① において, y ≧1 であるから 11-y≤10 よって 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 ②③から x = 3, 6,9,12,15 ゆえに,等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解x=0,y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ① ② から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから, ① のすべての整数解は x=3k, y=-2+11 (kは整数) と伝定して ..... 0000 | 組ある。 それらのうち である。 |基本 122 [福岡工大] 5組 (x,y)=(112,3) ① の整数解の1つ と表される。 x≧1, y ≧1 であるから よって ≤ks5 kは整数であるから k=1,2,3,4,5 ゆえに,①を満たす自然数x,yの組は『5組 xが2桁で最小となるのはk=4のときであり, (x,y)=(112, 3) このときの組は 3k≧1, -2k+11≧1 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 429 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 2k≧10から k≤5 不等号の向きに注意。 ←xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法 (E ス 免

解決済み 回答数: 1