学年

教科

質問の種類

数学 大学生・専門学校生・社会人

文章題、操作の手順の問題です。解説の意味が最初から全くわからないのですが、どなたかわかりますでしょうか…?解説して頂けるとありがたいです…

市役所上・中級 A日程 No. 242 判断推理唄 操作手順 25年度 A~Dの4人があみだくじを行った。 4人のスタート位置は図のよう であり,Aは1段目, Bは2段目, Cは3段目, Dは4段目にそれぞ れ横に1か所だけ線を書き加えた。その結果,当たりとなったのはDO であった。アイのことがわかっているとき,正しいものは次のうち どれか。 アDは,横の線を書き加えなくても当たりだった。 イCは,Aが横に線を書き加えた位置の真下に横の線を書き加え れば当たっていた。 AはCよりも左側の位置に到達した。 A 1段目 A 2段目B 13段目 C 14段目 市役 3X にな 3にボ の 数学 物理 5/18 1 2Bが横に移動したのは2回だった。 3CはBよりも右側の位置に到達した。 4DはBよりも右側に横の線を書き加えた。 5Aが横に移動したのは3回だった。 当たり 解説 Dは横の線を書き加えなくても当たりだったのだから, Dは4段目の最も左側に横の線を書き 加えたことになる。そして, Dが当たるためには,Dは (1) 横に1回も移動しない (2) 左 右に1回ずつ移動する, (3) 左右に2回ずつ移動する、のいずれかでなければならないが,D が書き加えた線が最も左側であることから, 左右に2回ずつ移動して当たりとなることはな い。そうすると,Dが書き加えた線が最も左側で,Dが当たりとなるのは10通りあることにな る。 このうち、条件を満たすのは下図の場合だけであり,この1通りに確定する。このとき, 4人の到達位置は左からC, B, D, A (スタート時の位置関係と同じ)となる。 CBDA 生物 地学 文章理解 判断推理 よって、正答は2である。 O C (M) 1-Exa Jos 正答 2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こちらのD>0までは分かったのですが、なぜ全ての実数aに対してD>0が成り立つ条件を考える時に図のような直線を元に考えるのでしょうか。また、ここで言う全ての実数aに対して、とは具体的にどういうことなのか分かりません。教えていただける方、よろしくお願いいたします。

Evid 53 面積 (2) xy平面上に,放物線C:y=x2-5x+6と直線l:y=kax-a-5aがある ただし, α, k は実数の定数とする. (1) すべての実数a に対して, lがCと異なる2点で交わるような定数に (2) (1)で求めた範囲にあって, Cとしで囲まれる図形の面積Sがαによら の値の範囲を求めよ. (一橋大) (解答) (1) |y=x2-5x+6 |y=kax-a²-5a ①②からyを消去して整理すると, x²-(ka+5)x+(a²+5a+6)=0 =4(k-2) (6k-13) であるから, D2<0より、 ③の判別式をDとすると, D₁ = (ka+5) ²-4 (a²2+5a+6)=(k²2—4)a²+2(5k-10)a+1 であり、「すべての実数a に対して, lがCと異なる2点で交わる条件」は, 「すべての実数a に対して, D1 > 0 が成り立つ条件」 x=α すなわち, 「すべての実数a に対して, (k²-4)a2+2(5k-10)a+1>0が成り立つ条件」 を考えればよい. ここで, f(a)=(k2-4)a2+2(5k-10)a+1 (=D1) とする. (ア)²-4<0のとき f(a) f(a) は上に凸の放物線となり、条件を満たさない。 (イ)²40 すなわちんく - 2,2くんのとき f(a) のグラフは下に凸の放物線である . f(a) のグラフが横軸と共有点をもたなければよいか ら, f(a) = 0 の判別式を D2 とすると,D2<0で あればよい, よって, -=(5k-10)²-(k²-4).1 =4(6k²-25k+26) 2<k<lo (k<-22<k を満たす) (ウ)k=2のとき C x=B f(a) = 1 であるから、すべての実数」に対して A (ア)²-4<0のとき f(a) (イ) k²4>0のとき f(α) を平方完成して, 頂点に注目して考えるこ ともできるが,平方完成の計算が大変なので、 判別式を利用した方がよい > a f(a) →0 O (ウ) k=2のとき k= f 以上よ (2) ③ C である が成り S S (1 解説 「6 挑戦し 試本番 本門 るが、 とき であ て扱 れを 文系

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

2解の切り取る線分の長さを考える事でこの問題を解くことはできないんでしょうか?

89 不等式を満たす整数 ■条件を満たす定数aの値の範囲を求めよ. [x2+2x-15>0 ......① 1x²-(a+1)x+a<0.2 する. 2x²-3x+α<0 を満たす整数xがちょうど4個存在する. αと1との大小関係に着目し, 場合分けして調べる. 3 □ 軸は直線x=1/1より, その4個の整数は, 3 4 (i) a < 1 のとき,②'より, a<x<1 ①',②'より,不等式を 満たす整数xがちょうど 3個となるのは右の図の 場合である。 したがって, -9a-8 (ii) α=1のとき, ②'は解なしで不適 (ii) α>1 のとき, ②'より, 1<x<a ①′②′より 不等式を 満たす整数xがちょうど① 3個となるのは右の図の -5 場合である. したがって, 6<a≤7 軸は直線 4 を満たす整数xがちょうど3個存在 x2+2x-15>0 より, (x+5)(x-3)>0 したがって x<-5,3<x ...... ①' x2-(a+1)x+α<0より, (x-1)(x-α) < 0 ......2' 1' a よって, (i)~(i)より、 -9≤a<-8, f(x)=2x2-3x+α とおくと, 9 f(x)=2(x-3) ²-3 +a (1 8 -91-71-5]] 86 これらより, x = 22 より, f(x)<0 x= 3 2次不等式と から近い4つの整数. (01- x= 13 x (2) 1 ・a 1 34567 x 6<a ≤7 3 1 101 2 9 3 x 満たす整数xがちょうど4個と るのは右の図の場合である. 条件は, f(-2)=14+a≧0, f(-1)=5+a<0, f(2)=2+a<0, f(3)=9+a≥0 --- ICA *** (x-1)(x-a)<0 Vis Vaši lax 場合分けが必要 α=-9 でもxの範囲 は-9<x<-5とな り,x=-6, -7, -8 となる. 一方, α=-8 とす ると, -8<x<-5 より, x=-6, -7 となり不適. 3 軸はx= に注意する. 不等式を満たす整数等号の吟味をしっかりせよ (一定) 軸に近い整数4個 -14-9-2 a -5 x-3>0x2+(2a-3)x-4a+2<0 を同時に満たす整数xがただ1つ存 A fost t 第2

未解決 回答数: 1
1/5