学年

教科

質問の種類

数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

シグマを使った数列の問題について質問です シグマの上の部分に、n-1などの時かつシグマの中身の部分の指数にk-1など、指数が文字のみではない時はどのような計算をするのですか 例えば、下線部がどのような計算をしたのかわからないです

基礎問 200 第7章 数 列 130 群数列(I) 精講 1から順に並べた自然数を, 1/2, 3/4, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 15 16, のように、第n群(n=1, 2, ...) が 27-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ (2) 第n群に含まれる数の総和を求めよ. (3) 3000は第何群の何番目にあるか. ある規則のある数列に区切りを入れて固まりを作ってできる群数列 を考えるときは, 「もとの数列ではじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します。 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて (1+2+..+27-2) 項目. すなわち, (27-1-1) 項目だからその数字は 2-1-1 よって、 第n群の最初の数は (2-1-1)+1=2-1 (2) (1)より,第2群に含まれる数は 初項2"-1 公差 1 項数2の等差数列. よって, 求める総和は 10 ・2n- 2-¹ (2-2-¹+(2-1-1). 1) 2 【各群の最後の数が基 準 【等比数列の和の公式 を用いて計算する AD =2"-2(2.2-1+2"-1-1)=2"-2(3.2"-'-1) (別解) 2行目は初項2"-1 末項2"-1. 項数2"-1の等差数列と考えて

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

下の方の青で囲ったところは、なぜxで表さずyとしているのですか?

■重積分...積分領域が変数に依存する場合 ○ 右図1のような立体 [分かりやすくするために階段 状に表示しているが, 実際は滑らかな局面で囲まれて いるものとする] の体積 (縦棒の体積の総和)は,面 積要素 ds=dxdy に高さz=f(x,y) を掛けて得られる体積 要素 dV=f(x,y)ds=f(x,y)dxdy の総和として, 定義域D上の重積分 JSpf(x,y)dxdy で求めることができます. of(x,y) が連続関数で,各変数の定義域が α≦x≦b, asysであるとき、この重積分は cb [ { [ f(x, y)dx } dy ...(1) a [ { [ f(x, y)dy } dx...(2) のように, 1変数の積分の繰り返しによって行うこと ができます. (1) は右図2のように, まず変数yを固定して,各々 のyについて,xで積分し(図で示した壁の面積S(y) を求めて),次にy の関数として表されたその面積を y で積分することによって体積を求めることに対応し ています。 (2)は図3のように,初めに x を固定してyで積分 し, 図で示した壁の面積S(x) を求めて、次にxで積分 するものです。 -1 ○変数の定義域が 0≦x≦1,0≦y≦xのよ うに他の変数に依存しているときは T! { [ f(x, y)dy } dx 0 または 0≦ysl, exslとして L' { [' f(x, y)dx } dy または D のように計算できます。 一般に,図4 (その平面図が図5) のように積分領 域Dの境界線が長方形でなく, 変数x,yの値に依存し ている場合 図2 図3 図4 図5 図6 B y 88 a S(x) b(v) a(y) 領域D B(X) _s(y) y b(y) X

未解決 回答数: 1
数学 大学生・専門学校生・社会人

なぜbnがn -1群なのかがわかりません 教えてくださいお願いします

元気カアップ問題 126 自然数の列を次のような群に分ける。 12.3|4,5,6|7,8, 9, 10|11, 12, 13, 14, 15|16, 17, … 難易度 CHECK I CHECK2 CHECKJ 1)第n群の初項を b。とおく。b, を求めよ。 (2)第n群の項の総和を S, とおく。 S, を求めよ。 (東北学院大*) レント!)自然数の列なので,全体の中の何番目かが分かれば, その数がそのまま その項の数になる。つまり,an==nなんだね。よって,(1)のb,=第n-1群までの 各群の項数の和+1となる。 ホ 解答&解説 ココがポイント bi b2 b4 bs 12,3|0, 5,6 (0,8,9, 10|1),12, 13, E E 介第n群の初項がb。より, b=1, bz=2, b3=4, b4=7, bs=11, … 第 第 第 第 1 2 群 群 群 (3項) (4項) 1項)(2項) (5項) となる。 (1) 第n群の初項を b。 とおくと,これは, 第n-1群 までの各群の項数の和に1をたしたものなので, このnにn-1を代入して, n-1 第n-1群までの各群の項数の和k%=ラ(n-1) n-1 どk=(n-1)(n-イナT) k=1 b,=(n°-n)+1 ① (n%=D1,2,…) ……(谷) 三 となる。 2)第n群はb,, bn+1, b,+2, …, ba+1-1| b.+1 n項 第n+1群の初項) よって,第n群の項の総和 S,は, 初項b., 公差1, 項数nの等差数列の和より, (26. (①より) n{n°-x+2)+n-1} n{2b,+(n-1)·1}_ 2 合等差数列の和 n{2a+(n-1).d} S,= 2 S,= 2 (答) =ラn(n'+1)(n=1,2,3…) 195

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

分かる方いたら解答解説お願いしたいです!

数学I·数学A 第3問~第5問は,いずれか2問を選択し,解答しなさい。 数学I.数学A 第3問(選択問題) (配点 20) コサ P2= シス 太郎さんと花子さんはパーティーの催し物について話し合っている。 となる。 ーれらより,料理を食べることができる人が1人だけである確率をかとすると 太郎:昨日,テレビ番組を見ていて面白いゲームを見つけたんだ。それをパー ティーの催し物としてやってみたらどうかと思うんだ。 花子:ぜひ聞かせて。 どんなゲームなの? 太郎:まず,おいしそうな料理を3種類用意するんだ。そして,ゲームの参加者 となる5人が他の人にわからないようにそれぞれ1種類を選び,他に同じ 料理を選んだ人がいない人だけがそれを食べることができるというものだ セソ p= タチ となる。 よ。 大郎:なるほど。思っていたよりも誰かが料理を食べられる確率は高いね。 じゃ 花子:とてもおもしろそうだね。 パーティーでやってみたいな。ところで,実際 あ,参加者の選んだ料理を紙に書いてもらって回収し, 食べられる人がい に料理を食べられる確率がどれくらいなのか調べておこう。食べられる人 るかいないかを発表することでゲームを盛り上げるのはどうだろうか。 が全然いないのでは盛り上がらないからね。 太郎:そうだね。 花子:そうだね。 じゃあ, 太郎さんがこのゲームに参加したとしましょう。太郎 さんを入れた5人に料理を選んでもらった結果,料理を食べられる人がい 花子:料理をx, y, z とし, 参加者の5人を A, B, C, D, E として考えてみ ましょう。料理を食べることができる人数は 0, 1, 2の3種類しかないか ることがわかった場合,太郎さんが料理を食べられる確率かは ら,一つずつ調べてみましょう。 ツ p= ージ テト」 1) 0080 5人の料理の選び方の総数はアイウ通りである。 となるね。 1人も料理を食べることができない確率 po を求める。 太郎:よし。じゃあこの内容でパーティーの催し物を考えていこう。 まず,全員が同じ料理を選ぶ場合は 通りある。また, 2人が同じ料理を選 び,残りの3人が別の同じ料理を選ぶ場合は全部でオカ通りあることから, 確率 エ poは キ Do= クケ となる。 (数学I.数学A第3問は次ページに続く。 - 21 -

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

経済学の質問ですが、内容が数学のものでしたのでこの場を借りて質問させて頂きました。文章にある割引利得の数式の意味がわからなく、そのためにある補足説明も読みましたが、数学が苦手な私は数列と無限級数などざっくり説明されても分かりませんでした。もし誰か出来たら、写真上の文章をも... 続きを読む

られたらこちら 済学でよく用いられる方法は, 引利得の総和 (以下単に, 割利得 ガンマ, 小文字) に対して6万円の金が1年後には利子がついて! 1つを採用し, 繰り返し囚人のジレンマ、 略が対戦するとき、 毎回のゲームで行動の組 (C, C) が選択される。 将来利得が割り引かれる原因は, いろいろなものが考えられる。 たとえば, 金銭的な利得の場合, 預金の利子率y(ギリシャ文字の らこちらも協力に戻る戦略である。 列といい う。とく ように, 将来利得の割引 数列とし で公差 また が対戦するとき、 毎回のゲームで行動の組 (C,C) が選択さい このとき、 2人のブプレイヤーは利得5の無限列。 できる 5,5, に 数 を得る。このような利得の無限列の評価として, ゲーム理論ちの 済学でよく用いられる方法は, 割引村得の総和 (以下単に, 割引IBe 和という)である。割引利得の考え方は, 将来の利得を現在時点。 評価する場合,額面より割り引いて評価するというものである。た とえば、1年後にもらえる1万円を, 現在価値に換算して0.7万円 の和 と書 an が無 と評価することである。 この割引の係数0.7 のことを将来利得の割 引因子という。割引因子の値が大きいほど, 将来利得を現在利得 と同程度に高く評価する。 利得5の無限列 (5,5,)の割引利得科 は, 6 (ギリシャ文字のデルタ, 小文字) を将来利得の割引因子とする とき,等比級数の和の公式 ( ds ④) より, と 5+56+ 58 + 5 と計算される。 ここで, 6 (0<6<1) である。 1-6 ガンマ, 小文字) に対して8万円の預金が1年後には利子が 142 第7章 繰り返しゲー( 済がま

未解決 回答数: 1
1/2