学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の問題です。全部分かりません。教えてください。

③3 確率×Yを以下のように定義する。 2 W.P. 1/6 W. P. x = 3 4 16 w. P. 1/5 w.P. 1/6 Y = 0 w.p. 112 wp. 1/6 I W. P 3/10 In 5 6 W. P. 1/6 1/6 W. P (1)XとYの確率関数をそれぞれfx(水).fy(y)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(水),Fy(y)とする。このとき、FX(0) FX(5) FY (0) FY (1) FY(2)の値をそれぞれ求めなさい。 (3) Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5)Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1 2X+3の平均を求めなさい。 (8) Z1の 分散を求めなさい。 (9) Z2=-3Y+2の平均を求めなさい。 (10) Z2の分散を求めなさい。 (1) f(x) C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(オ)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 x^ ~N(50,102) であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第 四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対して.2=2X-3Yと定義する。 このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、その分散を求めなさい。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これらの答えが知りたいです。 どなたかお願いします!

1. 偏りのない6面あるサイコロをn回投げる操作を考える.標本空間を Q={w1,...,wn; Wi ∈ {1,2,3,4,5,6},1<i<n} とする (上でwk はん回目の試行で出た目をあらわす) 部分集合 ACΩに対して, #A で集合Aの個数をあらわすとする. このとき はΩ上の確率となることを示せ . #A P(A) = 6n 2. 偏りのない4面あるダイスを1回投げる操作を考える.ここで標本空間を Q={1,2,3,4} とし,その上の確率Pを事象ACΩに対して P(A)= = #A で定める. (1) 事象 A = {1,2},B={2,3}, C'={1,3} に対して, A と B B と C およびCと Aは互いに独立であることを示せ . (2) 3つの事象 A,B,Cは独立でないことを示せ . (3) どれもΩ ではない任意の3つの事象は独立にならないことを示せ(ヒント: 任 意のA'c Ωが取り得る値の集合と, それらの積であらわされる数の集合を比較せ よ). 3. 関数 X を二項分布 B(n, 1/2) にしたがう確率変数とする. (1) Xが値k ∈ {0,1,...,n} をとる確率P(X=k) の値が最大となるときのんの値 を求めよ. (2) 上で求めた最大値をM(n) とするとき, limn→∞ M(n)=0となることを示せ . 関数 X をパラメータα>0の指数分布にしたがう確率変数とする. (3) X が xo > 0 以下となる確率P(X ≤ xo) が 1/2となるとき, To の値を求めよ. (4) x>0 に対して, limh+o P(x ≤X≤ x + h) の値を求めよ.

回答募集中 回答数: 0
1/5