学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ウォリスの公式の証明についてです。 1枚目の写真の問10が分かりません。 2枚目の写真の様に考えてみたのですが行き詰まって、他のアイディアが思い浮かばびません。 教えて下さい。

前節においては有限区間における有界な関数の積分を考えた。 この節では, $3 広義積分 113 n-1 In = -In-2 (n22). n In -Lh-3. In-e (m-2 0=x/2, h = 1 より (26) を得る。 n(n-2). n(n-2). T。 n …3-1 (n 奇数) ……4-2 ( 偶数) nENに対して, n!!:= M- n-3. n 2T 1-2 n-Ln-3. れ-2 3 とする。このとき, (26) は次のようにかける。 「h 年2 Tw2 (n 偶数) 2 こ4TA M-L-2.In-4 n In = 1-4 u (まスラ0) (n 奇数)。 0<とく要 = h-」.h-2 市困> さて,(O, t/2) で、sin?n+1x ゆえに, 上記の結果より, i. A sin2n x < sin?2n-1 x であるから, I2n+1 < 12n < Izn-1. (:0<qnk<) (n=,t,2, (2n-1)!! π 2 よって, 1 (2n-1)!! π 1 (27) 2n+1 (2n-1)!! 2 2n (2n-1)!! よって れ )1u (28) 21+1 t to 2n+1 1 2 1 2 2n+1 2n T Dah π ゆえに しはさ4うち。里さり、 2 2 = lim 2n. J(2n-1)!!]? (2n(29) Jen Len 方on-! =T n→0 これから, i(に)T 所(an-)! =STE 1 Vェ= lim 22n(n!)? = lim Vn (2n)! (30) ウォリス CWallis) これをワリスの公式という. ニこて Vn (2n-1)!! 1em) n→0 n→0 (2n)! (nコ (2n)!! -@n)-2n-2).4 =An-cn-t) 2·よ 問9 Vれ (n→). An! 問 10 (29) から次の式(これもワリスの公式という)を導け。 1 コ 1 (2n-2)? 1 2 lim {1 22 (2n)? m→0 22 42 62 $3 広義積分

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

残りの部分のうち〜のところで、「基本的な公式を変数変換して積分する」とはどういう意味でしょうか。 また、m>1の項は部分積分によって漸化式を作ってm=1に帰着するとはどういうことでしょうか。 教えてください。

楕円積分の前に, もっと簡単な積分をおさらいしておく、有理関数 多項式 多項式 arctan の組合せで書ける。詳しくは微積分の教科書)をご覧いただきたいが, お およそ次のような順番で証明する2)まず R(r) を部分分数分解する: R(z)の積分|R(z)dzは,有理関数,対数関数 log と逆正接関数 dim xteim 12 mj h mj Cim (2.2) R(z) = P(z)+2 2 + 2 と リーム+1 m=1((z-a,)+b})"* j=1m=1(c-a;)" ここで,P(x)は多項式,a, b, Cm, dpm, Ejm は実数,ム, le, m, は正の整数である.ゴ チャゴチャ面倒になったように見えるが,要は各パーツが簡単に積分できるよう に分解した,というのがアイディア. 多項式 P(z)は ST S(りひ 京をのきさ 2n+1 J* dz = (n:自然数) n+1 sbe という公式によって積分でき, 結果は多項式になる。 残りの部分のうちの m=1の項は, 基本的な公式3) ハ+ 食館 de : log (r-a), ミ C-a de S +1 arctan x, 2.c dc S? = log(z?+1) 2+1 を変数変換して積分する. m>1の項は, 部分積分によって漸化式を作ってm =1の場合に帰着する。

解決済み 回答数: 1