学年

教科

質問の種類

数学 大学生・専門学校生・社会人

 微分方程式についての質問です。  写真はある円の微分方程式を求める方法について2通りの説明をしています。  赤枠の部分がどのような過程で求まったのかが分かりません。  自分は △PTA∽△QPA ∴∠QPA=∠PTA=θ ∴AQ=PQtanθ だと思いました。 ... 続きを読む

(I-1図参照),この円群に属する円を任意にとり, その中心を, A(c,0) とすれ である。ところが, PA と PTは直交するから, I-1図からわかるように I- 第1章 微分方程式 2 平面上で、エ軸上に中心をもち, 半祐一定の長さょである回m. ば、この円の方程式は YA --y=r P(エ) P T A(c0) 0 X リ=ーr I-1図 (ェ-c)+ y° =r? である。ここで,定数cに種々の値を与えることによって,この円群に属士る すべての円の方程式が得られる。そこで, この(1)をいま考えている円群の方 程式という。また,定数cには任意の値を与えることができるから, cを任意 定数という.さて, この円群に属するすべての円が共通にもっている性質を求 めるために,方程式(1)から出発して任意定数cを含まない関係を求めよう。 そのために,(1)の両辺をェで微分すれば (z-c)+ y = 0 が得られる。そこで, (1) と (2) から文字cを消去すれば dy + y° = r? de が得られる。これが求めている共通性質であって,これは1階微分方程式での る。さて,I-1図のように,点 A(c.0)を中心とする円群に属する円を考え,て の上に任意の点P(x, y) をとり,点Pにおける接線を PT とすれば PQ? + AQ? = AP? =D r

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

2次元確率分布の期待値について 画像のように期待値は定義されています。 これから離散の場合だと E[X]=Σ[j=1 to r]xj•P(x=xj)と求めることができます。 しかし E[Y]=Σ[k=1 to c]yk•P(Y=yk)を上みたいに簡単に求めることはできない... 続きを読む

(x,9) = f(x)fa(y). X X, Y:独立 Y =yを与えたときのXの条件付き密度関数は f(z,y) f(x, v) h (zl) = *o nal . (z,y) de 18 で定義される。この条件付き密度関数による平均, 分散が Y = yを与えた こ、 ときのXの条件付き平均, 分散である: *00 E[Xy] = E[X|Y=y]= |zf(zl) da , ional VIXl] = V[X|Y=v]= _(x-E[X\v]}"A(zl») dx. 18 午 また、X=ェを与えたときの Yの条件付き密度関数,平均,分散も同様 a である。 4.2 共分散と相関係数 (X, Y) の関数 h(X, Y) の平均は, 確率変数の平均と同様に O X E((X, Y)} = |/ Me,y) dF(x,1) ときで定義され,離散分布と密度型分布に対しては次のように計算される: r E{h(X, Y)} = 2と(x;, Ya)f(x;, Uk) (離散) j=1 k=1 E(h(X, Y)} = | T Ma,y)f(x,v) drdy (密度)。 前述の(E1) - (E4) (19 ページ) と同様な性質に加え,さらに,次の性質が成 り立つ: (E5)関数が直積のときは, 条件付き平均を使って,ー E(h(X)h(Y)} = E(E[h(X)|Y]h(Y)). (E6) X, Y が独立のとき, 関数の積の平均は平均の積に等しい: E(h(X)h(Y)} = E{h(X)}E{ha(Y).

解決済み 回答数: 1