学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ケーリー・ハミルトン定理でn次の行列を求める問題(画像1)の解説にわからないところがあります。 画像1の矢印のところですが、余りの置き方が理解できません。どうしてaとbのところはただのtじゃなくて、(t-1)ですか? 前の問題(画像2)の余りは直接pxで、p(x-1)と... 続きを読む

755 例題3 (ケーリー・ハミルトンの定理) 次の行列について, 以下の問いに答えよ。 1) 14一厄| を (2) を求めよ。 [胡 説| 次のケーリー・ハミルトンの定理を利用する。 4 の固有多項式を7//の とするとき, (4)=O 1-7 0 0 1 2-z 1 0 0 1-: =テーの*(2一のテー一2⑦ー2の2 ……〔答〕 (2) ケーリー・ハミルトンの定理より, (4ーの*(4一2のめ=O が=(に1一2の9(の二g(7一1)7十6⑦7ー)十ce ……(*) とおく。 (*) に7王1 を代入すると c=1, 7王2 を代入すると g十5十c王2 (*) の両辺を微分すると 2コー2(7一1D(7ー29(の圭一179(の0二⑦ー1)2⑦ー2)97(⑦の 十22(⑰ー1)十り これに71 を代入すると, 5テ=ァ よって, g三2"ーみ一1, 5三2 c三1 となり *テ(ーーの9(の圭(2"ーター1)(⑦一1)7二(7ー1)十1 したがって, (4一の*(4 一2お) 0 に注意して 水三(2*ーターー1)(4一が?十z(4一ぢ)十ど 0 0 0Y 0 0 0 1 0 0 ee 1 りり 1 り 1 リり 0 0 0 0 0 0 0 0 1 1 0 0 (m | |王 0 0 1 解答] (1) |4一7/|=

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

二枚目の赤いラインの部分がよくわからないです。 前半部分、後半部分、共に式で説明してほしいです。 加えて、写真の枚数制限により付け加えられませんでしたが、別の証明との違いというか、この証明のように全てのパターンに対応しているのかについて教えて欲しいです。 おそらく画像は... 続きを読む

3定理のパリェーション 3 3 定理のバリエーション ロビタルの定理 1 には、 色んな細かいバリエーションがある。 それをこの節で紹介する まずは、定理1 の条件 1 のcと区間に関するもので、/をリーニ[a.の、またはリー(c紀 として、二限を hm 、または hmm の上凍限たするペリエーションがある。 きらに、q= co、またはョニーo とし、7はリー(K、so)、またはブー (ciK) の ような半無限区間とし、の条件 3 を jmm 7(z) = Hm 、 または Hm 7 _Him_9<) = 0 とし、血限を jmm 、または hm とするバリエーションがある。 れらに対しても、ロビタルの定理の結果はそのまま成り立つこ のようなょの収束先 (c) の変更が 5 通りある。 が知られているが また、不定肥が 1 でなく の場合のパリエーションもある。つまり、条件3 を 由 Bm gc などとした場合であるが、この場合もロビタルの 定理が成立することが知られているが、この任限の oc は ac に置き換えることもで きるので、それだけで 』 通りあり、上と同様の r の取束先の変更も考えるとそれがそ れぞれ 4 通りある (この場合は lin は考えず、通当片側税限を扱う) ので、全部で 16 通りあることになる。 でで21 通りのバリエーションがある なるが、さらに、(1) の 8が、有限 な値ではなく、oo か oo の場合でも定理が成り立つことが知られている。すなわち、 「太ニーo ならば 。 も oo となる」といった形である。よって、これらを上の 21 通りすべてに適用すれば、合計で G3 通りのバリエーションがあることになる。 もう 一度、分類を昧理してみる。すべてのパターンを (ヵ.4.7) のような記号で表現す る。各成分の意味は以下の通り。 ・の は、テの取束先に関するペリエー 通り ョン。 4(有際).g+0.40. oe oo の5 <9 は、 珍がる か かのバリェーション。 070.e/r ae/or eo/(ー) (-c)/(-c) の 5 通り (通常は、後者 4つをまとめて と呼ぶり。 ・7 はおに関するバリエーション。8 (有限).cc. -o の3通り。 の場合は、通常ヵニを外して考えるので、全部で5x5x3-4xlx3 =

解決済み 回答数: 1