学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

下の方の青で囲ったところは、なぜxで表さずyとしているのですか?

■重積分...積分領域が変数に依存する場合 ○ 右図1のような立体 [分かりやすくするために階段 状に表示しているが, 実際は滑らかな局面で囲まれて いるものとする] の体積 (縦棒の体積の総和)は,面 積要素 ds=dxdy に高さz=f(x,y) を掛けて得られる体積 要素 dV=f(x,y)ds=f(x,y)dxdy の総和として, 定義域D上の重積分 JSpf(x,y)dxdy で求めることができます. of(x,y) が連続関数で,各変数の定義域が α≦x≦b, asysであるとき、この重積分は cb [ { [ f(x, y)dx } dy ...(1) a [ { [ f(x, y)dy } dx...(2) のように, 1変数の積分の繰り返しによって行うこと ができます. (1) は右図2のように, まず変数yを固定して,各々 のyについて,xで積分し(図で示した壁の面積S(y) を求めて),次にy の関数として表されたその面積を y で積分することによって体積を求めることに対応し ています。 (2)は図3のように,初めに x を固定してyで積分 し, 図で示した壁の面積S(x) を求めて、次にxで積分 するものです。 -1 ○変数の定義域が 0≦x≦1,0≦y≦xのよ うに他の変数に依存しているときは T! { [ f(x, y)dy } dx 0 または 0≦ysl, exslとして L' { [' f(x, y)dx } dy または D のように計算できます。 一般に,図4 (その平面図が図5) のように積分領 域Dの境界線が長方形でなく, 変数x,yの値に依存し ている場合 図2 図3 図4 図5 図6 B y 88 a S(x) b(v) a(y) 領域D B(X) _s(y) y b(y) X

未解決 回答数: 1