数学
高校生

誰かこの問題の途中式を丁寧に解いてくれる方いませんか

(2log 2-e-2) dy

回答

参考・概略です

 ∫[{2^(y)}・{log(2)}-{e^(y-2)}]dy

●∫[f(x)±g(x)]dx=∫[f(x)]dx±∫[g(x)]dx より

=∫[{2^(y)}・{log(2)}]dy-∫[e^(y-2)]dy

●係数{log(2)}を前に出して

={log(2)}・∫[2^(y)]dy-∫[e^(y-2)}]dy

●∫[2^(y)]dy={2^(y)/log(2)}+C … ①
 ∫[e^(y-2)}]dy={e^(y-2)}+C  … ②

={log(2)}・{2^(y)/log(2)}-{e^(y-2)}+C

●log(2)を約分

={2^(y)}-{e^(y-2)}+C

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉