参考・概略です
∫[{2^(y)}・{log(2)}-{e^(y-2)}]dy
●∫[f(x)±g(x)]dx=∫[f(x)]dx±∫[g(x)]dx より
=∫[{2^(y)}・{log(2)}]dy-∫[e^(y-2)]dy
●係数{log(2)}を前に出して
={log(2)}・∫[2^(y)]dy-∫[e^(y-2)}]dy
●∫[2^(y)]dy={2^(y)/log(2)}+C … ①
∫[e^(y-2)}]dy={e^(y-2)}+C … ②
={log(2)}・{2^(y)/log(2)}-{e^(y-2)}+C
●log(2)を約分
={2^(y)}-{e^(y-2)}+C