数学
高校生
解決済み

アイのところなのですが、面積比だから底辺の比の2乗じゃないのですか?
どなたかすみませんがよろしくお願いします🙇‍♀️

16 難易度 ★★ △ABC があり, AB=2, AC=1, ∠BAC=120°である。 BAC の二等分線と直線BCの交点をDとする。 次の(i)(ii) の3 通りの考え方で, 線分AD の長さを求めよう。 (i) △ABD と △ACD の面積の比が (△ABDの面積):(△ACDの面積) アレ 2 600 1600 B © 20 D 3 であるから,BD:CD = ウ エロである。BC24+1-2.2.1.(2)=7 1 ただし、 ア イ ウ I |はそれぞれ最も簡単な整数比で答えよ。 2 ここで,BC=√ より, BD カキリ である。 36 ∠BAD=ケコ であるから, △ABD において, 余弦定理により 9 PAD-18AD+8:0AD-2AD+ サイ 0 シの BO2=AB2+AD2.2LAB.AD.1/2 28=4+AD2-2AD AD2-2AD+49:0 28 3-4-12 9 :-2 -6 78-18 が成り立ち、この方程式を解くと AD 2 2 である。 ただし、 > 24 と セイ タ セイ タ する。 BAD-4:0 3AD=4. 線分AD の長さは, ス AD=1313/ 4 ソ タ 3 217317 2.7 17 △ACD においても余弦定理によりADの値は2通りに求められ、それぞれの余弦定理で求めた HA と2通りに求められる。 3 チ2 値のうち、共通のものが正しい線分AD の長さであり, AD である。 (ii)(i)と同様にBC, BD の長さを求める。 ここで, △ABCに注目すると cos ∠ABC 〒5 トク である。 これより, △ABD において, ∠ABD についての余弦定理により, 線分AD の長さを求 めることができる。 -4 (Ⅲ) △ABD の面積は COS∠ABC= -AD である。 25. 4+7-1 2.2.√7 10×1500円 い 2814 73 75 また, △ABCの面積が であるから,△ABDの面積は ハ2 である。 これらより, 線分AD の長さを求めることができる。 (配点 15 ) 6 175 6 sin∠B=1- f 142 <公式・解法集 22 24 25 26 1243 fxe 6 sincB い エ ✓142 √2712 2 16 142 +2 21 23 2 3 △ABC=立っかい △ABDas1217 GABERS 12.9 GABCのS △ABD=1/2.2.ADsin600 こ 2. AD AD い △ABD=12AD 20

回答

✨ ベストアンサー ✨

比の2乗になるのは、相似な図形の時だけです。
今回問題は、2つの三角形は底辺は違うものの、高さは同じです。
なので、面積比=底辺の比 になります。

ゆる

教えてくださりありがとうございました🙇‍♀️二乗にするのは相似の時だけなのですね!!他は高さが同じなら底辺比と同じと考えて良いのですか?

きらうる

写真のような三角形なら、そのように考えていいです。

この回答にコメントする
疑問は解決しましたか?