数学
高校生
解決済み
三角比の相互関係の問題です。
オレンジ線から黄色の線までどのような式変形が行われているのかわかりません。解説お願いします!!
・関係
みましょう。
I sino, coso, tan 0 の相互関係
右の図の直角三角形 ABC において, ∠A=0 とすると
C
a
sin0=
b
cos =
C
an
分母を払って a=csin0,
C
b=ccose
①
[1] tan0=
ac sine
c sine
sin
=
b
C COS
cos Aan 20
[2] 直角三角形においては,三平方の定理 '+6=c2が成り立
つから, a,bに①を代入して
(csin0)+(ccos0)=c2
両辺を c2 (≠0) で割ると
(sin0)2+(cose)'=1
すなわち
sin20+cos20=1
[3] 上で得られた sin'0+cos20=1 の両辺を cos' で割ると
sin20+ COS20 1
=
cos'D cos' Cos'O
したがって
sino
2
1
1+
=
cos
cos²0
1
すなわち 1+tan20=
cos29
以上から、三角比の間に次の関係が成り立つ。
の十万期
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8864
115
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6046
25
詳説【数学A】第2章 確率
5821
24
数学ⅠA公式集
5583
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5121
18
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4834
18
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4525
11
詳説【数学A】第3章 平面図形
3589
16
詳説【数学Ⅱ】第4章 指数関数と対数関数
3349
8
ありがとうございます!そういうことだったんですね✨✨