数学
高校生
解決済み

(4)についてです

a^6が1になって、a^5が5になるのはなんでですか?

基本 例題 124 割り算の余りの性質 は整数とする。 α を7で割ると3余り, 6を7で割ると4 次の数を7で割った余りを求めよ。 1) a+26 針 (2) ab (3) a 00000 リリ #4) 2021 /p.536 基本事項 1.3 前ページの基本事項の割り算の余りの性質を利用してもよいが,(1)~(3) は, a=7k+3,b=7l+4と表して考える基本的な方針で解いてみる。 (3)(7k+3)を展開して, 7×○+▲の形を導いてもよいが計算が面倒。α* = (q2)" に 着目し,まず,2を7で割った余りを利用する方針で考えるとよい。 (4) 割り算の余りの性質 4αをmで割った余りは,r をmで割った余りに等しい を利用すると、 求める余りは 「32021 を7で割った余り」であるが,32021の計算は不可 能。 このような場合,まず α を mで割った余りが1となるnを見つけることか ら始めるのがよい。 CHART 割り算の問題 A=BQ+R が基本 537 (割られる数) = (割る数)×(商)+(余り) a=7k+3,b=71+4 (k, lは整数) と表される。 (1) a+26=7k+3+2(71+4)=7(k+2l)+3+8 7(k+21+1)+4 したがって, 求める余りは (2) ab=(7k+3)(71+4)=49kl+7 (4k+3l)+12 =7(7kl+4k+3+1) +5 って、求める余りは 5 k+3)2=49k²+42k+9=7(7k²+6k+1)+2 a2=7m+2(m は整数) と表されるから a=(a²)²=(7m+2)²=49m²+28m+4 =7(7m²+4m)+4 別解 割り算の余りの性質 を利用した解法。 (1) 2を7で割った余りは 2(2=7.0+2) であるか ら 26を7で割った余 りは2・48を7で割っ た余りに等しい。 ゆえに, α+26を7で 割った余りは3+1=4 7で割った余りに等し よって、 求める余りは okth したがって, 求める余りは ( (4)(3)より, α を7で割った余りが4であるから, で割った余りは 437で割った余り5に等しい。 ゆえにαを7で割った余りは5・3を7で割った余り 1 に等しい。 ®を7 (2) abを7で割った余 は3・4=12を7で割 余りに等しい。 よって、 求める余り Q2021 (α6)336.αであるから, 求める余りは, 1336.5=5 を7で割った余りに等しい。 (3)αを7で割った は3=81 を7で割 余りに等しい。 よって、 求める余 したがって、求める余りは 5

回答

✨ ベストアンサー ✨

(3)で
a²のあまりが2
a⁴のあまりが4
となった考え方と同じです

a⁵が5ではなくて
a⁵のあまりが5
a⁶のあまりが1 です。

1は何乗しても1なので
a⁶を基準にして(a⁶)ⁿ× という形にして考えています。

この回答にコメントする
疑問は解決しましたか?