数学
高校生
解決済み

解説の(2)(ⅲ)でan>2^(1/3)なので、1回変形しただけでも正であると言えると思うのですが、なぜ解答ではan^3が出る形まで変形しているのでしょうか。

14 不等式と漸化式 (1)x>0のとき,不等式 1/2(x+1/22) 221 を示せ、また等号が成り立つのはどのようなときか (2) 数列{a} を, a1=2, an+1= 2/3(an+1/2)(n=1,2,3,..)で定める。 1 (i) n≧1 のとき, an>an+1>2を示せ. 2. 2 2 (ii) n≧2のとき, を示せ. an+1 an 2 2 an 3 an-1 2 2\n-1 を示せ. 2 3 an (i) n≧1のとき, 0<an+1 an+1 <kan 不等式の証明 (金沢大文系) k>0,an>0のとき, an+1 <kan をくり返し用いて, am <kn-la を導くことができる。 A>Bを示すには, A-B>0 を示すことを目標にするのが基本方針. ②なり 解答量 (1) 与式の分母を払い、2-3・2332+20 これを示せばよい。 左辺を因数分解して(x-21) (2+2号) D ←t=23 とおくと, 2x3-3t2+1=(x-t) (2x+t) >0のとき ①≧0 (等号はx=23)であるから示された。 ant 3 = (a+11) (2)(i)/a>2号と(1)より,帰納的に4741= an 2 an 3-2 3an2 an 2 1 ->0 (an>23) 2 1 また, an-an+1=an- 3 ant 1 よって,amam+1 > 2 2 2 1 = 2 an 3 an 2 2 (iii) an+1) = an 2 = 2 よって,,>2/1/3(n≧1)が成り立 つ これを帰納法で示すと丁寧. (an> Ants >2} (1+4) XA-Bo 2 (日)) (ii) an+17 2 2 = an 2 2 an 3 2 an an 2 3 an an-1 ->0 (an>23) 2 an 3-2 -(-)-> 2 3 an 2 3 2 n=1のとき=1で与式は成立する.n≧2のとき (ii) をくり返し用いて, an+1 2 an 2 2 3 an 2 < an-12) n-1 a2 22 33 2 a₁2 an-1 2 An-22 n-1 ・1= 2\n-1 (号) an-1 _2 an-2 0<an <an-1より 2. 1+4 an² <an-12 2 = a2 2 a1 上式 2-3 2-3 2 2 2 an an-1 03-2 2 223-2 22 =1 2

回答

✨ ベストアンサー ✨

(iii)と書いてあるところのすぐ横の式でしょうか。

2^(1/3)ってパッといくつかわかりますか?
例えば1.2と比べて2^(1/3)が大きいか小さいかわかりますか?
an=1.2だった場合、
(an-2/an^2)=1.2-2/1.2^2≒-0.19<0になります。
2^(1/3)がどの程度なのか分からなければ正なのか負なのか分からないんです。

3乗について
an>2^(1/3)なんだから3乗したらan^3>2って分かります。
すると、an^3-2>0となり、分母は正なので全体が正となります。

この回答にコメントする
疑問は解決しましたか?