数学
高校生
解決済み

下線部の前までは分かるんですがなぜ下線部で符号が変わっているのか教えてくださいm(_ _)m

★★☆☆ が120であ 271 等差数列の和の最大値の 初項が 73, 公差が -4である等差数列{an} について (1) (2) 初めて負の項が現れるのは第何頃か。 初項から第n項までの和 S が初めて負となるnの値を求めよ。 頻出] (★☆☆ (3)初項から第n項までの和 Snの最大値とそのときのnの値を求めよ。 条件の言い換え (1)初めて負の項が現れる (2)和が初めて負となる (3) a1+a2+a3+... +a + ④ ⇒ an < 0 となる最小の自然数n S < 0 となる最小の自然数n +a+a+ e 思考プロセス 和の公式 +(n-1)d} 和 S が増加していく 和 S が減少していく 最大 Action » 等差数列の和 Sn の最大値は,正の頃の和を求めよ (1)この数列の一般項an は an=73+(n-1)・(-4) = -4n+77 <0とおくと, -4770 より よって、初めて負の項が現れるのは第20項 n> 19.25 77 n> 19.25 4 は自然数であるから n≧20 6 Sn=1n{2a+(n-1)d} 章 (2) S=1/2x{2.73+(n-1)(-4)}= -2㎡+75m Sn < 0 のとき n(2n-75)>0 nは自然数であるから,2n-750より > 37.5 よって n = 38 1 数列{az} は初項から第19項までは正の数が、 第20項以降は負の数が並んでいる。 よって, S は n=19 のとき最大となり, 最大値は 1 S19 19.{2・73+ (19-1)・(-4)}=703 2 1 S < 0 となる最小の自然 数nを求める。 a1, a2,, a19, a 20, ... 20 以降を加えると, S は 減少していくから α1 か α19 までの和 S19 が Sn の最大値である。 16 等差数列等比数列 (-1) )・(2)} Point...和の最大値と2次関数の最大値 0 18 75 19 n 4 例題271(3) は, S, = -2㎡ +75=-2-25 +5625 と変形 SHA 703 8 できるから, Sηは 75 702 18.75 に最も近い自然数 19 のとき は 4 最大となることが分かる。 253 開271 初項が 100,公差が-7である等差数列{a} について (1)初めて負の項が現れるのは第何項か。 (2)初項から第n項までの和 S, が初めて負となるnの値を求めよ。

回答

✨ ベストアンサー ✨

Sₙ
= -2n²+75n
= -n(2n-75)

Sₙ < 0だから
-n(2n-75) < 0
両辺に-1を掛けたから不等号の向きが変わって
n(2n-75) > 0
です

ちーず

理解出来ました!!ありがとうございます!!

この回答にコメントする
疑問は解決しましたか?