数学
高校生
解決済み
(2)が答えと合いません😭
最初ミスに気がついた所を直したのですが、それでも出来ませんでした😭
どこが間違っているか教えて下さい😭
お願いします🙏🏻
(1)と(2)は繋がっていて、問題文、赤字の式を使っています。🙇🙇
答えは1番下に書いてあるようになるそうです。
漸化式 演習問題① a1=2,anti=-3an-4n+3
数列{an} はα」=1, 0„+1=20万+を満たすとする。
(1) b=an+1-a とおくとき, bn+1を6 を用いて表せ。
与えられた漸化式より
an+2=-3ant1-4(h+1)+3
近々引いて
antz-anti=-3anti-4h-1-(-3an-4n+3)
antz-anti=-3(anti-an)-4
ここでbn=anti-anだから
bnti=antz-anti
bnti=-3bn-4
#
a2=-3-4+3
bnti=-3bn=4
(2) 数列 {a} の一般項を求めよ。
bnti=-36n-4を変形して
bnte+1=-3(bn+1)
d=-30-4
40=-4
α=-1
数列{bn+13は初項bia2-a1-4
-2
よってbitに追に!
+2
公比-3の等比数列だから、
-2
h-1
bn+1=-4.(-3)m-1bn+1=3
bn=-4-(-3)-1 bn=3-1
bn=anti-an より
-41-33-1=anti-an
Anti+3an
〃)-4h+3
-4(-33-1+4h-3=
-4an
An = - 3^-1 + 4-h + 32/34
-37-1_n+1
-2-(-3)-1
7
nt l
Anti-An = 3h-1-.
-Jan+1+3an = -4h+3
-4an = 3h-1+4h-3
-4an = 3h-1 +4h-4
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8938
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6086
25
数学ⅠA公式集
5658
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5142
18
分かりました!ありがとうございます!