数学
高校生
解決済み

赤線部分がどこから来たのか分かりません🙇🏻‍♀️

基本 63 原因の確率 00000 ある工場では、同じ製品をいくつかの機械で製造している。 不良品が現れる確 率は機械Aの場合は4%であるが、それ以外の機械では7%に上がる。また。 機械 A で製品全体の60%を作る。 製品の中から1個を取り出したとき (1)それが不良品である確率を求めよ。 (2) 不良品であったとき、それが機械Aの製品である確率を求めよ。 基本58, 60 64 指針 取り出した1個が、 機械Aの製品である事象を4, 不良品である事象をEとする。 (1)不良品には, [1] 機械Aで製造された不良品, [2] 機械A以外で製造された不良品 の2つの場合があり、これらは互いに排反である。→P(A∩E)+P(ĀNE) (2) 求めるのは、「不良品である」ということがわかっている条件のもとで,それが機 械Aの製品である確率 すなわち 条件付き確率 P(A) である。 取り出した1個が、機械Aの製品であるという事象をA,検討 解答 不良品であるという事象をEとすると P(A)= P(A)=1-23-2123,PA(E)- 60 3 100 5' 次のように、具体的な数 4 Px(E)= . 100 7 100 (1) 求める確率はP(E) であるから を当てはめてみると、問 題の意味がわかりやすい。 全部で1000個の製品を 製造したと仮定すると = P(E)=P(A∩E)+P(A∩E) =P(A)P^(E)+P(A)P(E) 3 4 27 26 . 5 100 5 100 500 (2) 求める確率はP(A) であるから P(A∩E) P(A)P(E) 機械 製造数 不良品 A 600 24 + 13 250 A以外 400 28 at 1000 52 52 13 (1)の確率は 1000 250 3 13 6 Pr(A)= = P(E) P(E) 125 250 13 (2)の確率は2-1
確率 数a

回答

✨ ベストアンサー ✨

P(A)Pa(E)の部分です。上で3/5,4/100と求めているのをかけるとこうなります。

s

理解しました。
ありがとうございました🙇🏻‍♀️

この回答にコメントする
疑問は解決しましたか?