数学
高校生

この問題が解説を見てもよく分かりません
解説よろしくおねがいします🙇

も内 173 の 演習 例題 194 対数方程式の解の個数 00000 aは定数とする。 xの方程式 {10g2(x2+√2)}^2-210gz(x2+√2)+α=0の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x2+√2)=tとおくと,方程式は t2-2t+a=0 (*) 基本 183 2√2の値の範囲を求め,その範囲におけるtの方程式(*)の解の個 数を調べる。それには,p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 SELECT 解答 log2(x2+√2)=t $0.0> (Sargola) (1) ① とおくと, 方程式は t²-2t+a=0 0218.0 1108. 2+√2≧√2であるから 215 21 >01.0 311 10 10gz (x2+√2) log√2 したがって t≧ (2) E 226 227 228 229 230 231 22 233 234 また,①を満たすxの個数は,次のようになる。 =1/2のときx=0の1個, のとき x2>0であるから 2個 t2-2t+α=0から Slant (1) x2+√2=25より, x2=2√2 であるから t=1/2のとき x=0 1/1/3のときx>0 よって x=±√2-√2 -t2+2t=a 1 よって、②の範囲における, 直線 y=aを上下に動か 3 y=a 放物線y=-t2 + 2t と直線 y= a 4 a! 1 1 i して、共有点の個数を調 べる。 の共有点の座標に注意して, 01 方程式の実数解の個数を調べると, α>1のとき0個; a=1, a< a< 2 のとき2個; -12 1 2 32 共有点なし。 <t> // である共有点1個。 4 a= =2のとき3個; -<a<1のとき4個 <a 1 3 t= 2 2 \t> である共有点2個。

回答

まだ回答がありません。

疑問は解決しましたか?