数学
高校生
解決済み

多項式の割り算の(ア)を解いてみて、
手書きの解答でいうところの
③を使って解くと剰余の定理を使ってもあまりが出ません。
しかし④を使うと値が出ます。

私は計算し終わるまで気づけませんでしたが、
どこで気づいて④を使う解き方をすると判断すればよかったんでしょうか?

6 多項式の割り算/2つの余りの条件 (ア) 整式f(x)は1で割ると余りが3である。また,f(x)を 4+5である。このとき,f(x)をュー1で割ったときの余りを求めよ (イ) 整式(x)を4x+3で割ったときの余りは+1であり、 +1で割ると余りが (関西大 総合情報) 3+2で割ったときの余 りは3-1である。「f(x)を6ェ”+11エー6で割ったときの余りを求めよ。 2つ目の条件の反映させ方 (秋田大 医) (ア)のように、2つの余りの条件がある場合,それらの割る式を掛け合 わせた式で割ったときの余りを求めることが多い。 (ア)を例にして説明しよう。 一方の余りの条件(割 る式の次数の高い方: いまは+x+1) の商をA(x) とおくと, f(x)=(x+1)A (g) +4x+5... と表せる。いま、f(x)を1=(x-1)(x+x+1)で 割った余りを求めたい。そこで,-1が現れるように,A(x)をェー1で割ることを考える.A(ェ)を ェー1で割った商をB(x), 余りをrとして,A(z)=(x-1)(x)+rとおきに代入する。この式 に対して,もう一方の余りの条件を反映させてを求めれば,-1で割った余りが分かる。 解答 (ア) f(x) = (x²+x+1)A(x)+4x+5 スートを開けん (3)f()=(x-1)Q(+3 (1)Q(+12+ A):151-1)Q3(2)+C ←前文参照。 ↓ A(x)=(x-1)B(x) +r と表せるから,f(x)=(x'+x+1){(x-1)B(x)+r}+4r+5 =(-1)(x)+r(エ2+x+1)+4x+5 ・・① f(x) をェ-1で割ると余りが3であるから, 剰余の定理により,f(1) 3 ①に=1 を代入して,f(1)=3+9 .. 3ヶ+9=3 :.r=-2 したがって, ① により, 求める余りは, Q)=(Amith Q2(2)=(2-1)B(42 f(x) をx-1で割った余りは2 次以下になるが, ①により. f(x) をー1で割った余りが (x'+x+1)+4 +5であるこ とが分かる. あとはを求めれ ばよい。 -2(x2+x+1)+4+5=-2x'+2x+3 (イ)-4x+3=(x-1)(x-3), 2-3x+2=(x-1)(x-2), x³-6x²+11x-6-(x-1) (r2-5x+6)=(x-1)(x-2) (x-3) であることに注意する. f(x) を4x+3で割った余りが+1である。商を A(x) とおくと,f(x)=(-1)(x-3)A(エ)+1 ここで,A(z)=(x-2)B(エ)+rと表せ,これを①に代入して f(x)=(x-1)(x-3){(x-2)B(x)+r}+x+1 一方, f(x) を2-3+2で割った余りが3x-1であるから, f(x) = (x-1)(x-2) Q (エ)+3r-1 と表せる。式に2を代入して,f(2)=5.②にx=2を代入して, ..-r+3=5 f(2) =-r+3 ..r=-2 ②から,f(x)=(x-1)(2)(3)B (ェ)-2(-1)(x-3)+1 wwwwwwwwwwwwwwwwwww したがって、求める余りは, =-2x2+9x-5 06 演習題(解答は p.26) -6211-6にェ=1を代入 すると0になるから, 因数定理に よりェー1で割り切れる (次章の 4 を参照). A (x) をェー2で割った商が B(x), 余りが (1次式で割った から,余りは定数). rを求めるには,②でB(ェ) が消 えてが残るェ=2に着目。 (1)f(x)=(2-3)Q(13 f=(2-2)(1)(2)+320-1 f=(23622-112-6)Q)(2) (1)(2)(3) Q1(2)(x-2) Ath Q2(x)=(7-3)B()+12 (ア) 整式P(x) を (エー)”で割ると1余り、エー2で割ると2余る。このとき,P(エ) (1)(2)で割ったときの余りR(x) を求めなさい。 (兵庫県立大・社会情報-中) (イ)整式Aを2で割ると余りが+3+1でありー4で割ると余りが +1である。このときを ++4で割ると余りはである。 (イ)の前半は, 03 の演 +2で割ると余りはであり,Aを (南山大 数理情報 ) 題(イ)と同様である。 13
6.(ア) < f(x)=(ス―1)Q,(2)+3 f(x)=(x+2+1)(21)+4x+5- f(x)=(23-1)Q3(2)+C ①、②でスピーノが現れるようにできたが 求めるむになる ①から Q1(x)=(x+x+1)A(ス)+hi ②から Q2(x)=(x-1) B(2)+F- <①113 Ven Fax. (x-1){(x²+x-41) Amur, 7+3 リ (x-1)A()+(x-1),+3 剰余の全生 f(1)=3 よって⑤に代入して 3 = 0+3 ④2125 ver> fa)=(x++x+1){ (a-1) Bath}+42+5 (3-1)B(x)+(ズナス+1)12 + 4x+5-6 f(1)=3を⑥に代入 3=12+5 -2=12

回答

✨ ベストアンサー ✨

そもそも③とは表せません
2次式で割ったときの余りは1次以下なのに、
勝手に0次つまり定数と決めつけるのが間違いです

この回答にコメントする
疑問は解決しましたか?