数学
高校生
解決済み

下線部の4acが4・3・4になるのが理解できません( т т )

重要 例題 41 2次方程式の解の条件と確率 ①①①①① 000 3,4,5,6,7,8 から3つの異なる数を取り出し、 取り出した順にα, b, c とす る。このとき, a, b, c を係数とする2次方程式ax2+bx+c=0 が実数解をもつ 確率を求めよ。 基本36 指針 この問題では,数学Ⅰで学ぶ以下のことを利用する。 2次方程式 ax+bx+c=0)の実数解の個数と判別式D=b4acの符号の関係 D>0 のとき,異なる2つの実数解をもつ D≧0 のとき, ...... ★ D=0 のとき, ただ1つの実数解 (重解)をもつ実数解をもつ D<0 のとき, 実数解をもたない ゆえに, D=b2-4c≧0 を満たす組 (a, b, c) が何通りあるか,ということがカギと なる。この場合の数を 「a, b, cは3以上8以下の整数」, 「a=bかつbcかつc≠α」 という条件を活かして, もれなく、重複なく 数え上げる。 解答 できる2次方程式の総数は P3=6・5・4=120 (通り) 2次方程式 ax2+bx+c=0の判別式をDとすると,実数 解をもつための条件は D≧0 ① 1組 (a, b, c) の総数。 本 D=62-4ac であるから b2-4ac≧0 a,38, 3≦cs8であり, a≠cであるから b'≧4ac≧4・3・4 6=7,8 } (*) 28 指針 ★の方針。 本 acのとりうる最小の値 に注目する。 <72=49>48 であるから 6=7,8 ①より ゆえに 62≧48 よって 6=7 のとき, ①から 49 724ac すなわち ac≦ =12.25 -206 4.28 この不等式を満たすα, cの組は (a, c)=(3, 4), (4, 3) (n) (E) b=8のとき, ①から 824ac すなわち ac≦16 この不等式を満たす α, c の組は (a, c)=(3, 4), (3, 5), (4, 3), (5, 3) 2+4 1 したがって、求める確率は = 120 20 3以上8以下の異なる2 数の積は, 小さい順に 3・4=12, 3・5=15, 3・6=18>16 以後も16より大きい。 よって, a,cの組を絞る ことができる。 >

回答

✨ ベストアンサー ✨

aは3,4,5,6,7,8
cも3,4,5,6,7,8
aとcは異なる数
a×cの最小は? という話です

aやcはなるべく小さくすべきです
a=3,c=3が理想ですが、a,cは同じ数にはなれないので
片方を一つ大きい4にします
どちらを4にしてもacは同じで、
acの最小値は3×4=12です

この回答にコメントする
疑問は解決しましたか?