数学
高校生
解決済み
練習29で1枚目が解答なんですがこのように展開されている途中の段階がわからなくて解き進められません😰
どなたか教えてください🙇🏻♀️
◆練習 29
1-2i が方程式 x3 + ax + b = 0 の解であるから
(1 − 2i)³ + a(1 − 2i) + b = 0
(a + b11)+(2-2a)i = 0
10
15
20
10 Tips
解
15
20
3 1つの虚数解が与えられた高次方程式
応用 3次方程式x3+ax+b=0の解の1つが1+ i であるとき,実数の
例題
3
定数 α, b の値を求めよ。 また, 他の解を求めよ。
解を代入すると,その方程式の等号が成り立つ。
1+żが方程式x3+ax+b=0の解であるから
(1+i)³+a(1+i)+b=0
25
整理して (a+b-2)+(a+2) i = 0
a+6-2, a+2 は実数であるから
a+b-2=0. α+2=0
a=-2, b=4
←A,Bが実数のとき
A+Bi=0
これを解いて
このとき, 方程式は
左辺を因数分解すると (x+2)(x2-2x+2)=0
よって, 解はx=-2, 1±i
ゆえに, 求める他の解はx=-2, 1-i
x-2x+4=0
A = 0 かつ B=0
応用例題3において, 解 1+i 1-iは互いに共役な複素数である。
一般に, 係数がすべて実数である高次方程式が虚数解 p+gi をもつ
とき,それと共役な複素数 -gi も解である。
練習 29 3次方程式x+ax+b=0の解の1つが1-2i であるとき, 実数の定
数 α, b の値を求めよ。 また, 他の解を求めよ。
工
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8920
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
数学ⅠA公式集
5638
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5134
18
ありがとうございます!