数学
高校生

104.2
記述に問題ないですか??

基本例題 104 倍数の判定法 (1) 5桁の自然数 2576 が8の倍数であるとき, □に入る数をすべて求めよ。 (2) 6桁の自然数Nを3桁ごとに2つの数に分けたとき, 前の数と後の数の差が 7の倍数であるという。このとき,Nは7の倍数であることを証明せよ。 (例) 869036の場合 869-036=833=7×119であり, 869036=7×124148 1838858008 (2)類成城大 p.4682 指針 (1) 例えば, 8の倍数である 4376は,4376=4000+376=4・1000+847 と表される。 1000=8・125は8の倍数であるから、8の倍数であることを判定するには,下3桁が8の (ただし,000 の場合は0とみなす) 倍数であるかどうかに注目する。 (2) Nの表し方がポイント。 3桁ごとに2つの数に分けることから, N = 1000α+b (100≦a≦999,0≦b≦) とおいて, N は 7の倍数⇔N=7k(kは整数) を示す。 解答 (1) □に入る数を α ( α は整数, 0≦a≦9) とする。 下3桁が8の倍数であるとき, 2576は8の倍数となるから 700+10a+6=706+10a=8(a+88)+2(a + 1 ) 2 (α+1) は8の倍数となるから, α+1は4の倍数となる。 よって a+1=4, 8 すなわち a = 3,7 したがって、□に入る数は 3, 7 (2) N=1000a+b(a,bは整数;100 ≦a≦999,0≦b≦999) とおくと,条件から, a-b=7m(mは整数)と表される。 ゆえに, a=b+7m であるから N=1000(6+7m)+b=7(1436+1000m) したがって, N は 7の倍数である。 |706=8・88+2 そば 987654122 は、 右の図において, (①+③) -② から 664=455=7×65 0≦a≦9のとき 1≤a+1≤10 |869036=869000+36 = 869×1000+36 のように表す。 10016+7000m =7・1436+7・1000m 検討 7の倍数の判定法 上の例題 (2) の内容を,一般の場合に拡張させた、 次の判定法が知られている。 一の位から左へ3桁ごとに区切り, 左から奇数番目の区画の 和から、偶数番目の区画の和を引いた数が7の倍数である。 例 987654122 3桁ごとに区切る 987 | 654 | 122
216桁の自然数Nを N = a b c d e f & 7 fe abc - def = (k (k (x) と表すことができる。 N = 10²³¹ x abc + def = lool abc = abc + def t 二 •141 x 7 abc - (abc - def) = 14/ x7 abc - 7k = 7 ( 141 abc = k/ 141.abc-kは整数なのでNは7の倍数である

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉