数学
高校生

カッコ1の最後の式の(3-1)×4の理由がわかんないです

364 第6章 場合の数 例題206 三角形の個数(2) A1, A2, As, ..., A12 を頂点とする正十二角形が ある.この頂点のうち3点を選んで三角形を作るとき, 次の個数を求めよ. (1) 二等辺三角形 (2) 互いに合同でない三角形 考え方 (1) 二等辺三角形は、 右の図のように底辺の垂直二等 分線について対称になる. つまり, 頂角にくる点を固定して, 底角にくる点 のとり方を考えればよい. 解答 A1~A12 について同様に考えれば, 個数を求める ことができるが, 正三角形になる場合に注意する. (2) 頂点間の間隔に着目する. 右の図のように①と②は合同 で ①と③は合同でない. (1) A1 を頂角とする二等辺三角形は, 線分 A1A7 に関して対称な点の組 (A2, A12), (A3, A11), (A4, A10), (A5, A9), (A6, A8) の5通り よって, 60-(3-1)×4=52(個) (2) 1つの頂点をAとしてよい. 他の2頂点を Ai, Aj(i<j) とす るとき, 頂点は12個より, 5×12=60 (個) このうち, 正三角形となる4個の三角形は3回重複 して数えている. a A9 ! A5 A7 よって, 求める個数は, 12個 |z=5 x=i-1, y=j-i, z=13-j として, x+y+z=12 (1≦x≦y≦z) を満たす整数解の個数を求めればよい. この整数解を求めると, (x,y,z)=(1,1,10),(1,2, 9), (1,3,8), (1, 4, 7), (1, 5, 6), (2, 2, 8), (2, 3, 7), (2, 4, 6), (2, 5, 5), (3, 3, 6), (3, 4, 5), (4, 4, 4) A1 A8 x=3 y=4, A4 A₁ A12, A2 All A10 A9 A10 # A8 Ø *** A7 A₁ A6 A3 A4 A5 # A4 正三角形は他の頂点 から見ても二等辺三 角形なので,重複し て数えてしまう. 正三角形となるのは (A1, A5, A9), (A2,A6, A10), (A3, A7, A11), (A4,A8, A12) 1つの頂点を固定し て他の2つの頂点の とり方を考える. 辺の移動回数が小さ い順に考えていく. M AICACACA 回回回 D1≤x≤y≤z, |x+y+z=12
答 (1) A1 を頂角とする二等辺三角形は, 線分 A1A7 に関して対称な点の組 (A2, A12), (A3, A11), (A4, A10), (A5, A9), (A6, A8) の5通り して数えている. a 60-(3-1)×4=52 (個) よって, (2) 1つの頂点を A1 としてよい. 他の2頂点を Ai, Aj(i<j) とす るとき, A9 頂点は 12 個より, 5×12=60 (個) このうち,正三角形となる4個の三角形は3回重複 x=i-1, y=j-i, z=13-j として, x+y+z=12 (1≦x≦y≦z) を満たす整数解の個数を求めればよい. この穀粉解を求め z=5 A1 A8 AZ A1 A5 x=3 y = 4, A4 1

回答

まだ回答がありません。

疑問は解決しましたか?