数学
大学生・専門学校生・社会人
解決済み

【至急】帝京大学2023年数学の過去問です。
解説お願いしたいです🙇
どなたかお願いします🙏

|-53- 〔1〕 数学(総合) 〔2〕 (1) 752-2の整数部分をa、小数部分をbとするとき. b= ア さらに, (2) 4x+ 1 4x = 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 bx+y 2-b となる。 (1) aを定数とする。 xの2次方程式 y= イ ウ となり (a+26)²= =bを満たす有理数x, y は, x = カキ =√5のとき、64x+6 x 2 + (a + 1)x + α² + α-1=0 ...... ① <a< について, 判別式Dは. D=- ア a². a+ ウ となる。 したがって, ① が異なる2つの実数解をもつαの値の範囲は, エオ カ ⑩x238 ① 38 < x 39 239 < x² ≤ 40 コサ ③ 40 <x≦41 ④ 41 < x² キ したがって, xの整数部分が コ (2) 正の数xとその小数部分yに対して, x2+y2 = 40 ① が成り立つとする。 xについて次の⑩~④のうち,正しいものは ク である。 エオとなる。 サ となる。 y=クケとなる。 となる。 ケ とわかる。 これと①より. 〔3〕 αを定数とする。 放物線y=-x-ax +7・・・・ ① について考える。 放物線 ① について次の⑩~④のうち,正しいものはア とイ である。 ただ し、解答の順序は問わない。 〔4〕 ⑩ 放物線①は上に凸である。 ① 放物線①は下に凸である。 ② 放物線①はx軸と共有点をもたない。 3 放物線①はx軸と共有点を1つだけもつ。 ④ 放物線 ① は x軸と共有点を2つもつ。 -1≦a≦3における放物線① の頂点のy座標は,a= ウ のとき最小値 I カキ ク a= オ のとき, 放物線①は, 放物線y=-x²+xのグラフをx軸方向に ケコ y軸方向に サ だけ平行移動したものとなる。 をとり, a= COSA= (1) AB = 7,BC=5,CA=4√2 の△ABCについて さらに, sin B = siny_ sin a オ である。 さらに, sin B sina ア イ である。 のとき最大値- コサ シス である。 また, 外接円の半径は カ をとる。 キ である。 (2) AB = 4,BC=7. CA = 5の△ABCの辺BC上にBD =3となる点Dをとる。 ∠BAD = α, ∠CAD = β, ∠ADB=y とする。このとき ク ウ オ I である。

回答

✨ ベストアンサー ✨

山口さま

解答解説してみました。
参考になれば幸いです。

数学ⅰ
山口さん

ありがとうございます!
参考にします🙇

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉