数学
高校生
分散の加法性の証明について質問があります。
2つの互いに独立な確率変数X,Yについて、それぞれの分散V(X),V(Y)がV(X)+V(Y)=V(X+Y)と表されることを証明しようと思いました。
そこで、分散が2乗平均引く平均の2乗であることを利用して、以下のようにやってみました。
V(X+Y)=E[(X+Y)^2]-{E(X+Y)}^2
=E(X^2+2XY+Y^2)-E(X+Y)E(X+Y)
= E(X^2+2XY+Y^2)-E(X^2+2XY+Y^2)
=0
絶対違うなお思ったので考えてみたのですが、怪しいのがE(X+Y)E(X+Y)をE(X^2+2XY+Y^2)としたところです。同じ確率変数は独立じゃないから間違えてるんですよね?
もし他のところがおかしかったら教えて下さい。
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6078
51
詳説【数学A】第2章 確率
5840
24
詳説【数学A】第3章 平面図形
3607
16
詳説【数学A】第4章 命題と論理
2827
8