数学
高校生

画像下線分でaと24の最小公倍数が240となるのはa=2^4・3・5に決定できる理由がわかりません。

479 基本 例題 111 最大公約数 最小公倍数と数の決定 (2) 次のA,国,を満たす3つの自然数の組 (a, b, c) をすべて求めよ。 ただし, aくあくeとする。 (A) a, b, cの最大公約数は6 B) あとcの最大公約数は24, 最小公倍数は144 C aとbの最小公倍数は240 4章 17 [専修大] p.476 基本事項3, 基本110 指針>前ページの基本例題110 と同様に, 最大公約数と最小公倍数の性質 を利用する。 2つの自然数a, bの最大公約数を g, 最小公倍数を 1, a=ga', b=gbとすると 1a'とがは互いに素 2 1=ga'b' 3 ab=gl (A)から, a=6k, b=6, c=6mとして扱うのは難しい(k, 1, m が互いに素である,とは 仮定できないため)。 (B) から 6, c, 次に, (C) から aの値を求め, 最後に (A) を満たすものを 解とした方が進めやすい。 このとき,b=246', c=24c' (b', dは互いに素でが<c)とおける。 最小公倍数について 246'c'=144 TSAHO これから6, c'を求める。 解答 (B)の前半の条件から, b=246', c=24c' と表される。 ただし,が, c'は互いに素な自然数で b<c. (B) の後半の条件から これとDを満たすが, c' の組は の 246'c=144 すなわち b'C=6 gb'で=l ゆえに (6, c)=(24, 144), (48, 72) (b=246', c=24c (A)から, aは2と3を素因数にもつ。 また,(C) において 240=2*.3·5 最大公約数は 6=2-3 [1] 6=24(=D2° 3) のとき, aと 24の最小公倍数が240 であ るようなaは これは, a<bを満たさない。 240=2*-3-5 [1] b=2°-3 [2] b=2-3 これからaの因数を考え a=2*.3·5 [2] 6=48(=2*.3) のとき, aと 48の最小公倍数が240 であ a=2°-3-5 a<48を満たすのは p31 の場合で, このとき 30, 48, 72 の最大公約数は6で, (A) を満たす。 (a, b, c)=(30, 48, 72) るようなaは ただし p=1, 2, 3, 4 る。 a=30 以上から 約数と倍数、最大公約数と最小公倍数

回答

まだ回答がありません。

疑問は解決しましたか?