数学
高校生
解決済み

昨日の入試で解いた問題なのですが、キ以降があってるかどうか分からなくて不安です、、、根気で解いたのですが、根気以外でまともに解く方法を教えてほしいです。解き方が気になってしょうがないです😭

II ある企業の顧客向け電話相談窓口は、1人の従業員Aによって連運営されている。 この電話相談窓口では, 以下により応対を行う。 その顧客の電話が着信した時点から通話が開始される。 の 顧客の電話が着信した時刻にAが他の顧客と通話中であれば,そ の顧客は電話をつっないだまま待機し, Aと他の顧客との通話が終了 した時点からその顧客との通話が開始される。 の 他の顧客との通話が終了した時点で2人以上の顧客が待機している 場合は、先に着信した顧客が優先される。 の この電話相談窓口に電話する顧客は全員。着信してからAとの通 話が始まるまで待機し続ける。 例えば、午前9時0分に電話相談がが開始されてから,1人目の着信が午前9時3 分にあり2分間通話し, 2人目の着信が午前9時4分にあり3分間通話したとする。 この場合の1人目の待機時間は0分間,通話時間は2分間であり, 2人目の待機時 間は1分間、通話時間は3分間である。 表 ある日の10人の顧客への応対まとめ ある日の午前9時0分から 電話が着信 した時刻 (午前9時) 15 Aとの通話時間 (単位:分間) 顧客の の60分間に、Aは10人の願 通し番号 客に応対した。右の表には、 不分) 15 0分 着信順に顧客の通し番号を付 2 9分 6 け、電話が着信した時刻,A との通話時間をまとめている。 3 11分 8 通し番号10の次の顧客の電 4 16分 7 話が着信した時刻は 10時0 5 22分 6 分であった。 6 27分 31分 3!5 7 この日の午前9時0分から の60分間の応対について考 8 37分 37(1 9 46分 える。 (S分) 5 54分 10 (3分 56 - 57 - 1o60
5. (1) 顧客とAとの通話時間の平均値は 2分間,標準偏差は ア 分間,中央値は 分間。 分間である。 Sauc89 エ 四分位範囲は 17 10 (21 通し番号 k(k=1, 2, 3.…, 9. 10) の顧客の電話が着信した時刻か ら次の顧客の電話が着信した時刻までの時間を着信間隔a,として定義する。 70 a,の平均値は|オ6分間、標準偏差は カイ分間である。 10 行ちの 料人である。またAが応対した [3) 待機時間が0分間でない顧客の数は 0.9 10人の待機時間の平均値は 09 ク 分間である。 [4) ここで、待機時間の平均値を減らすことを目的に2つのシスデムを考えた。 (a) 10人の顧客の電話が着信した時刻は表のデータのままで、従業員向け のマニュアルをわかりやすくすることなどにより、各顧客の通話時間を1 分間だけ短くすることを考えた。このときの待機時間の平均値は ケ 分間となり、 ク、よりも 分間減らすことができる。 コ (b) 10人の顧客の通話時間は表のデータのままで、通し番号1の顧客の電 話が着信した時刻も午前9時0分のままとし,スマートフォンのアプリな どを用いた事前予約制にして着信問隔a,を6分間の一定間隔にすること サ分間となり、 ひ2 を考えた。このときの待機時間の平均値は ク シ|分間減らすことができる。 ふ9 よりも 50 45 00 Sed 28,? 10 10 289 O299 023(4)5 Si5 6 @1d a289 え51 170 1051,249 26.01 57 5.1 16 Sか 215 7× 299 2を 26.01 19 252 - 58 - to1 2-ス (スリ-(ス) 2-5i1 2.84 sa3) 90

回答

✨ ベストアンサー ✨

着信時刻(分)
0 9 11 16 22 27 31 37 46 54
通話時間(分)
5 6 8 7 6 3 5 4 5 2
着信感覚(分)
9 2 5 6 5 4 6 9 8 6
待ち時間(分)
0 4 3 1 1 0 0 0 0 0

[1]

全部足して10で割る
(5+6+8+7+6+3+5+4+5+2)÷10 = 51/10 = 5.1

小さい順に並べて
2345556678 中央値は5

6-4 = 2

各数2乗すると
4 9 16 25 25 25 36 36 49 64
合計は289 , 平均は28.9
分散は (2乗の平均) - (平均)²
28.9-25 = 3.9
標準偏差は√3.9

[2]

着信時刻
0 9 11 16 22 27 31 37 46 54 60 ←最後10:00に着信
差をとると
9 2 5 6 5 4 6 9 8 6 (着信間隔,足したら1時間になる)
合計は60 ,平均は 6

分散は (各数-平均)²の平均なので
(3²+4²+1²+0+1²+2²+0+3²+2²+0 )/10= 4.4
標準偏差は √4.4

[3]

5 6 8 7 6 3 5 4 5 2 (通話時間)
9 2 5 6 5 4 6 9 8 6 (着信間隔)
差をとると
-4 4 3 1 1 -1 -1 -5 -3 -4 (待った時間,1番目は除く)
これの正の値だけ見ると
3番目の人は4分間
4番目の人は3分間
5番目の人は1分間
6番目の人は1分間待ったことになるから
待機時間が0でない人数は4

(4+3+1+1)/10 = 0.9

[4]
(a)

(4+3+1+1-4)/10 = 0.5

0.9-0.5 = 0.4

(b)

5 6 8 7 6 3 5 4 5 2 (通話時間)
から各値6を引くと
-1 0 2 1 0 -3 -1 -2 -1 -4
待ち時間の平均は (2+1)/10 = 0.3

0.9 -0.3 = 0.6

間違ってたらすみません

marimo

ありがとうございました😭

この回答にコメントする
疑問は解決しましたか?