z=x+iyとして代入します。
f(z)=(x²+2ixy-y²)+3×+3iy+2
=(x²+3x-y²+2)+i(2xy+3y)
となります。
du/dx=dv/dy=2x+3
du/dy=-dv/d×=-2y
(偏微分の記号が出せないのでdで代用)
となりコーシーリーマンの関係式を満たしていることが確認できるので正則となります。
すいません。僕自身、物理は素人なんで他の方に質問してくださいね。
複素関数論の問題で、この関数の正則性を示せという問題で、分かる方コメントくれればと思います。
よろしくお願いします。
f(z)= z*^2+3Z+2
この問題の正則性を教えてください。よろしくお願いします。写真も添付します。
z=x+iyとして代入します。
f(z)=(x²+2ixy-y²)+3×+3iy+2
=(x²+3x-y²+2)+i(2xy+3y)
となります。
du/dx=dv/dy=2x+3
du/dy=-dv/d×=-2y
(偏微分の記号が出せないのでdで代用)
となりコーシーリーマンの関係式を満たしていることが確認できるので正則となります。
すいません。僕自身、物理は素人なんで他の方に質問してくださいね。
この質問を見ている人は
こちらの質問も見ています😉
ありがとうございます。
熱力学のもう1つの問題もわかれば、よろしくお願いします。