Mathematics
高中
已解決

・数C

式変形がどうなっているのか教えてほしいです、よろしくお願いします

634 基本 例題 30 線分の平方に関する証明 0000 △ABC の重心をGとするとき,次の等式を証明せよ。 (2) AB2+AC2=BG2+CG2+4AG2 (1) GA + GB + GC= 0 D ( 基本 15 重要 33. 基本 71、 指針 (1) 点を始点とすると, 重心Gの位置ベクトルは 0は任意の点でよいから, Gを始点としてみる。 ABO OG = (OA+OB+OC) (2)図形の問題→ベクトル化も有効。 すなわち, AB2 など ( 線分)には AB=|AB|=|6-a として,内積を利用するとよい。 なお,この問題では BG?, CG2, AG2 のように, G を端点とする線分が多く出てくる から,Gを始点とする位置ベクトルを使って証明するとよい。 すなわち、GA=d, GB=6,GC= として進める。 (1)の結果も利用。 CHART 線分)の問題 内積を利用 (1) 重心Gの位置ベクトルを, 点 0 LA 解答 に関する位置ベクトルで表すと 三 OG= (OA+OB+OC) である 3 文 G 別解 (1) GA+GB+GC =(OA-OG)+(OB-OG) + (OC-OG) =OA+OB+OC-30G =0 から,点Gに関する位置ベクト ルで表すと B C GG=1/21 (GA+GB+GC) 3 OA: 4:00 ゆえに GA+GB+GC=0 GG=0 (2) GA=a, GB=, GC= c とすると,(1)の結果から a+b+c=0 ゆえに 条件式 また よって AB=b-a, AC=cka=-2a-6 AB2+AC2-(BG'+CG2+4AG2) =|AB|+|AC|-|BG+CG+4|AGI) =16-a+1-24-6 2G-1-6²-la+61-41- ゆえに =(16-26 a+la)+(4a²+4㕯+1612) -16-(la+2ab+16)-4a² =0 ベクトル AB2+AC2=BG2+CG2+4AG2 HADA HOBA 練習 次の等式が成り立つことを証明せよ。」( ② 30 (1) △ABCにおいて, 辺BCの中点をMとするとき B'+AC2=2(AM'+BM) (中線定理) (2) △ABCの重心をG, 0 を任意の点とするとき AG2+BG2+CG2=0A2+ OB2+ OC2-30G 2 文字を減らす方針で <A=B⇔A-B = 0 AB²=|AB|²

解答

✨ 最佳解答 ✨

そこは一つのつながった式を
2行に分けているだけのようですが、
矢印の場所は合っていますが?

すみませんお恥ずかしいことにその通りでした、、ありがとうございます🙏🏻

留言
您的問題解決了嗎?